Active Surface
   HOME
*





Active Surface
An active surface is a surface of a radio telescope that is under active computer control of its shape. Large (more than 10 m in diameter or length) radio telescopes always bend during operation, due to their enormous weight and the fact that even the strongest materials are not perfectly stiff. This bending, in the range of a few millimetres, does not affect low frequency operation much, but dramatically reduces the efficiency of the telescope at higher frequencies where the wavelengths are comparable to the distortion. Typically, the efficiency of a telescope drops appreciably when the deviation from the desired shape is more than 1/10 of the considered wavelength. An active surface uses numerous small actuators to move the surface panels with respect to the underlying frame, and thus maintain the correct shape. An active surface can try to compensate for many different types of errors. The first is gravity—this is simplest since previous measurements, or even a m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radio Telescope
A radio telescope is a specialized antenna and radio receiver used to detect radio waves from astronomical radio sources in the sky. Radio telescopes are the main observing instrument used in radio astronomy, which studies the radio frequency portion of the electromagnetic spectrum emitted by astronomical objects, just as optical telescopes are the main observing instrument used in traditional optical astronomy which studies the light wave portion of the spectrum coming from astronomical objects. Unlike optical telescopes, radio telescopes can be used in the daytime as well as at night. Since astronomical radio sources such as planets, stars, nebulas and galaxies are very far away, the radio waves coming from them are extremely weak, so radio telescopes require very large antennas to collect enough radio energy to study them, and extremely sensitive receiving equipment. Radio telescopes are typically large parabolic ("dish") antennas similar to those employed in tracking an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Green Bank Telescope
The Robert C. Byrd Green Bank Telescope (GBT) in Green Bank, West Virginia, US is the world's largest fully steerable radio telescope, surpassing the Effelsberg 100-m Radio Telescope in Germany. The Green Bank site was part of the National Radio Astronomy Observatory (NRAO) until September 30, 2016. Since October 1, 2016, the telescope has been operated by the independent Green Bank Observatory. The telescope's name honors the late Senator Robert C. Byrd who represented West Virginia and who pushed the funding of the telescope through Congress. The Green Bank Telescope operates at meter to millimeter wavelengths. Its 100-meter diameter collecting area, unblocked aperture, and good surface accuracy provide superb sensitivity across the telescope's full 0.1–116 GHz operating range. The GBT is fully steerable, and 85 percent of the local celestial hemisphere is accessible. It is used for astronomy about 6500 hours every year, with 2000–3000 hours per year going to high-fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Large Millimeter Telescope
The Large Millimeter Telescope (LMT) ( es, Gran Telescopio Milimétrico, or GTM) -officially Large Millimeter Telescope Alfonso Serrano ( es, Gran Telescopio Milimétrico Alfonso Serrano)- is the world's largest single-aperture telescope in its frequency range, built for observing radio waves in the wave lengths from approximately 0.85 to 4 mm. It has an active surface with a diameter of and of collecting area. It is located at an altitude of 4850 metres on top of the Sierra Negra, the fifth highest peak in Mexico and an extinct volcanic companion to Mexico's highest mountain, the Pico de Orizaba, inside the National Park Pico de Orizaba in the state of Puebla. It is a binational Mexican (70%) – American (30%) joint project of the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the University of Massachusetts Amherst. Millimetre wavelength observations using the LMT will give astronomers a view of regions which are obscured by dust in the inte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sardinia Radio Telescope
The Sardinia Radio Telescope (SRT) is 64-metre fully steerable radio telescope near San Basilio, Sardinia, San Basilio, Province of Cagliari, Sardinia, Italy. Completed in 2011, it is a collaboration between the Istituto di Radioastronomia di Bologna, the Cagliari Observatory (Cagliari) and the Arcetri Observatory, Arcetri Astrophysical Observatory (Florence). Design The telescope is in Sardinia, north of Cagliari, and is the largest of a set of three telescopes operated by INAF, along with telescopes at the Medicina Radio Observatory and the Noto Radio Observatory. It operates as a stand-alone instrument and as part of global networks of telescopes. The telescope and its structure weighs around . The primary mirror is in diameter. It has an active surface consisting of 1008 aluminum panels in 14 rows. Each panel has an area between 2.4 and 5.3 square metres. There are 1116 actuators mounted on the backing structure, which move the surface panels correct for the distortion of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noto Radio Observatory
The Noto VLBI Station is a radio observatory located on Sicily, southern Italy Italy ( it, Italia ), officially the Italian Republic, ) or the Republic of Italy, is a country in Southern Europe. It is located in the middle of the Mediterranean Sea, and its territory largely coincides with the homonymous geographical re ..., outside the city of Noto, Italy, Noto. The facility is operated by the Istituto di Radioastronomia di Bologna. The Antenna (radio), antenna is a 32-metre diameter paraboloid fitted with an active surface and Receiver (radio), receivers for astronomy observations from 1 to 86 GHz. The Noto antenna is used in conjunction with other antennas throughout Europe and the world for VLBI. See also *Istituto di Radioastronomia di Bologna *List of radio telescopes *Medicina Radio Observatory *European VLBI Network, EVN References

Radio telescopes Astronomical observatories in Italy Buildings and structures in Noto {{observatory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Five Hundred Meter Aperture Spherical Telescope
The Five-hundred-meter Aperture Spherical radio Telescope (FAST; ), nicknamed Tianyan (, lit. "Sky's/Heaven's Eye"), is a radio telescope located in the Dawodang depression (), a natural basin in Pingtang County, Guizhou, southwest China. FAST has a diameter dish constructed in a natural depression in the landscape. It is the world's largest filled-aperture radio telescope and the second-largest single-dish aperture, after the sparsely-filled RATAN-600 in Russia. It has a novel design, using an active surface made of 4,500 metal panels which form a moving parabola shape in real time. The cabin containing the feed antenna, suspended on cables above the dish, can move automatically by using winches to steer the instrument to receive signals from different directions. It observes at wavelengths of 10 cm to 4.3 m. Construction of FAST began in 2011. It observed first light in September 2016. After three years of testing and commissioning, it was declared fully operatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radio Astronomy
Radio astronomy is a subfield of astronomy that studies celestial objects at radio frequencies. The first detection of radio waves from an astronomical object was in 1933, when Karl Jansky at Bell Telephone Laboratories reported radiation coming from the Milky Way. Subsequent observations have identified a number of different sources of radio emission. These include stars and galaxies, as well as entirely new classes of objects, such as radio galaxies, quasars, pulsars, and masers. The discovery of the cosmic microwave background radiation, regarded as evidence for the Big Bang theory, was made through radio astronomy. Radio astronomy is conducted using large radio antennas referred to as radio telescopes, that are either used singularly, or with multiple linked telescopes utilizing the techniques of radio interferometry and aperture synthesis. The use of interferometry allows radio astronomy to achieve high angular resolution, as the resolving power of an interferometer is set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Astronomical Imaging
Astrophotography, also known as astronomical imaging, is the photography or imaging of astronomical objects, celestial events, or areas of the night sky. The first photograph of an astronomical object (the Moon) was taken in 1840, but it was not until the late 19th century that advances in technology allowed for detailed stellar photography. Besides being able to record the details of extended objects such as the Moon, Sun, and planets, modern astrophotography has the ability to image objects invisible to the human eye such as dim stars, nebulae, and galaxies. This is done by long time exposure since both film and digital cameras can accumulate and sum photons over these long periods of time. Photography using extended exposure-times revolutionized the field of professional astronomical research, recording hundreds of thousands of new stars, and nebulae invisible to the human eye. Specialized and ever-larger optical telescopes were constructed as essentially big cameras to rec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]