HOME
*





Ackermann Ordinal
In mathematics, the Ackermann ordinal is a certain large countable ordinal, named after Wilhelm Ackermann. The term "Ackermann ordinal" is also occasionally used for the small Veblen ordinal, a somewhat larger ordinal. Unfortunately there is no standard notation for ordinals beyond the Feferman–Schütte ordinal Γ0. Most systems of notation use symbols such as ψ(α), θ(α), ψα(β), some of which are modifications of the Veblen function In mathematics, the Veblen functions are a hierarchy of normal functions ( continuous strictly increasing functions from ordinals to ordinals), introduced by Oswald Veblen in . If φ0 is any normal function, then for any non-zero ordinal α, φ ...s to produce countable ordinals even for uncountable arguments, and some of which are " collapsing functions". The last one is an extension of the Veblen functions for more than 2 arguments. The smaller Ackermann ordinal is the limit of a system of ordinal notations invented by , and is some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Large Countable Ordinal
In the mathematical discipline of set theory, there are many ways of describing specific countable ordinals. The smallest ones can be usefully and non-circularly expressed in terms of their Cantor normal forms. Beyond that, many ordinals of relevance to proof theory still have computable ordinal notations (see ordinal analysis). However, it is not possible to decide effectively whether a given putative ordinal notation is a notation or not (for reasons somewhat analogous to the unsolvability of the halting problem); various more-concrete ways of defining ordinals that definitely have notations are available. Since there are only countably many notations, all ordinals with notations are exhausted well below the first uncountable ordinal ω1; their supremum is called ''Church–Kleene'' ω1 or ω1CK (not to be confused with the first uncountable ordinal, ω1), described below. Ordinal numbers below ω1CK are the recursive ordinals (see below). Countable ordinals larger than ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wilhelm Ackermann
Wilhelm Friedrich Ackermann (; ; 29 March 1896 – 24 December 1962) was a German mathematician and logician best known for his work in mathematical logic and the Ackermann function, an important example in the theory of computation. Biography Ackermann was born in Herscheid, Germany, and was awarded a Ph.D. by the University of Göttingen in 1925 for his thesis ''Begründung des "tertium non datur" mittels der Hilbertschen Theorie der Widerspruchsfreiheit'', which was a consistency proof of arithmetic apparently without Peano induction (although it did use e.g. induction over the length of proofs). This was one of two major works in proof theory in the 1920s and the only one following Hilbert's school of thought. From 1929 until 1948, he taught at the Arnoldinum Gymnasium in Burgsteinfurt, and then at Lüdenscheid until 1961. He was also a corresponding member of the Akademie der Wissenschaften (''Academy of Sciences'') in Göttingen, and was an honorary professor at the Univ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Small Veblen Ordinal
In mathematics, the small Veblen ordinal is a certain large countable ordinal, named after Oswald Veblen. It is occasionally called the Ackermann ordinal, though the Ackermann ordinal described by is somewhat smaller than the small Veblen ordinal. There is no standard notation for ordinals beyond the Feferman–Schütte ordinal \Gamma_0. Most systems of notation use symbols such as \psi(\alpha), \theta(\alpha), \psi_\alpha(\beta), some of which are modifications of the Veblen functions to produce countable ordinals even for uncountable arguments, and some of which are " collapsing functions". The small Veblen ordinal \theta_(0) or \psi(\Omega^) is the limit of ordinals that can be described using a version of Veblen functions with finitely many arguments. It is the ordinal that measures the strength of Kruskal's theorem. It is also the ordinal type of a certain ordering of rooted tree In graph theory, a tree is an undirected graph in which any two vertices are connecte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Feferman–Schütte Ordinal
In mathematics, the Feferman–Schütte ordinal Γ0 is a large countable ordinal. It is the proof-theoretic ordinal of several mathematical theories, such as arithmetical transfinite recursion. It is named after Solomon Feferman and Kurt Schütte, the former of whom suggested the name Γ0. There is no standard notation for ordinals beyond the Feferman–Schütte ordinal. There are several ways of representing the Feferman–Schütte ordinal, some of which use ordinal collapsing function In mathematical logic and set theory, an ordinal collapsing function (or projection function) is a technique for defining ( notations for) certain recursive large countable ordinals, whose principle is to give names to certain ordinals much larger ...s: \psi(\Omega^\Omega), \theta(\Omega), \varphi_\Omega(0), or \varphi(1,0,0). Definition The Feferman–Schütte ordinal can be defined as the smallest ordinal that cannot be obtained by starting with 0 and using the operations of ordinal addition an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Veblen Function
In mathematics, the Veblen functions are a hierarchy of normal functions ( continuous strictly increasing functions from ordinals to ordinals), introduced by Oswald Veblen in . If φ0 is any normal function, then for any non-zero ordinal α, φα is the function enumerating the common fixed points of φβ for β<α. These functions are all normal.


The Veblen hierarchy

In the special case when φ0(α)=ωα this family of functions is known as the Veblen hierarchy. The function φ1 is the same as the ε function: φ1(α)= εα. If \alpha < \beta \,, then \varphi_(\varphi_(\gamma)) = \varphi_(\gamma).M. Rathjen

[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Collapsing Function
In mathematical logic and set theory, an ordinal collapsing function (or projection function) is a technique for defining (notations for) certain recursive large countable ordinals, whose principle is to give names to certain ordinals much larger than the one being defined, perhaps even large cardinals (though they can be replaced with recursively large ordinals at the cost of extra technical difficulty), and then "collapse" them down to a system of notations for the sought-after ordinal. For this reason, ordinal collapsing functions are described as an impredicative manner of naming ordinals. The details of the definition of ordinal collapsing functions vary, and get more complicated as greater ordinals are being defined, but the typical idea is that whenever the notation system "runs out of fuel" and cannot name a certain ordinal, a much larger ordinal is brought "from above" to give a name to that critical point. An example of how this works will be detailed below, for an ord ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Smallest Uncountable Ordinal
In mathematics, the first uncountable ordinal, traditionally denoted by \omega_1 or sometimes by \Omega, is the smallest ordinal number that, considered as a set, is uncountable. It is the supremum (least upper bound) of all countable ordinals. When considered as a set, the elements of \omega_1 are the countable ordinals (including finite ordinals), of which there are uncountably many. Like any ordinal number (in von Neumann's approach), \omega_1 is a well-ordered set, with set membership serving as the order relation. \omega_1 is a limit ordinal, i.e. there is no ordinal \alpha such that \omega_1 = \alpha+1. The cardinality of the set \omega_1 is the first uncountable cardinal number, \aleph_1 ( aleph-one). The ordinal \omega_1 is thus the initial ordinal of \aleph_1. Under the continuum hypothesis, the cardinality of \omega_1 is \beth_1, the same as that of \mathbb—the set of real numbers. In most constructions, \omega_1 and \aleph_1 are considered equal as sets. To gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]