Abramov's Algorithm
   HOME
*



picture info

Abramov's Algorithm
In mathematics, particularly in computer algebra, Abramov's algorithm computes all rational solutions of a linear recurrence equation with polynomial coefficients. The algorithm was published by Sergei A. Abramov in 1989. Universal denominator The main concept in Abramov's algorithm is a universal denominator. Let \mathbb be a field of characteristic zero. The ''dispersion'' \operatorname (p,q) of two polynomials p, q \in \mathbb /math> is defined as\operatorname (p,q) =\max \ \cup \,where \N denotes the set of non-negative integers. Therefore the dispersion is the maximum k \in \N such that the polynomial p and the k-times shifted polynomial q have a common factor. It is -1 if such a k does not exist. The dispersion can be computed as the largest non-negative integer root of the resultant \operatorname_n (p(n), q(n+k) ) \in \mathbb /math>. Let \sum_^r p_k(n) \, y (n+k) = f(n) be a recurrence equation of order r with polynomial coefficients p_k \in \mathbb /math>, polynomial ri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Algebra
In mathematics and computer science, computer algebra, also called symbolic computation or algebraic computation, is a scientific area that refers to the study and development of algorithms and software for manipulating mathematical expressions and other mathematical objects. Although computer algebra could be considered a subfield of scientific computing, they are generally considered as distinct fields because scientific computing is usually based on numerical computation with approximate floating point numbers, while symbolic computation emphasizes ''exact'' computation with expressions containing variables that have no given value and are manipulated as symbols. Software applications that perform symbolic calculations are called ''computer algebra systems'', with the term ''system'' alluding to the complexity of the main applications that include, at least, a method to represent mathematical data in a computer, a user programming language (usually different from the languag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rational Function
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers; they may be taken in any field ''K''. In this case, one speaks of a rational function and a rational fraction ''over K''. The values of the variables may be taken in any field ''L'' containing ''K''. Then the domain of the function is the set of the values of the variables for which the denominator is not zero, and the codomain is ''L''. The set of rational functions over a field ''K'' is a field, the field of fractions of the ring of the polynomial functions over ''K''. Definitions A function f(x) is called a rational function if and only if it can be written in the form : f(x) = \frac where P\, and Q\, are polynomial functions of x\, and Q\, is not the zero function. The domain of f\, is the set of all values of x\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-recursive Equation
In mathematics a P-recursive equation is a linear equation of sequences where the coefficient sequences can be represented as polynomials. P-recursive equations are linear recurrence equations (or linear recurrence relations or linear difference equations) with polynomial coefficients. These equations play an important role in different areas of mathematics, specifically in combinatorics. The sequences which are solutions of these equations are called holonomic, P-recursive or D-finite. From the late 1980s on the first algorithms were developed to find solutions for these equations. Sergei A. Abramov, Marko Petkovšek and Mark van Hoeij described algorithms to find polynomial, rational, hypergeometric and d'Alembertian solutions. Definition Let \mathbb be a field of characteristic zero (for example \mathbb = \mathbb), p_k(n) \in \mathbb /math> polynomials for k = 0,\dots,r,f \in \mathbb^ a sequence and y \in \mathbb^ an unknown sequence. The equation\sum_^r p_k(n) \, y (n+k ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic (algebra)
In mathematics, the characteristic of a ring (mathematics), ring , often denoted , is defined to be the smallest number of times one must use the ring's identity element, multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent (group theory), exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Resultant
In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients, which is equal to zero if and only if the polynomials have a common root (possibly in a field extension), or, equivalently, a common factor (over their field of coefficients). In some older texts, the resultant is also called the eliminant. The resultant is widely used in number theory, either directly or through the discriminant, which is essentially the resultant of a polynomial and its derivative. The resultant of two polynomials with rational or polynomial coefficients may be computed efficiently on a computer. It is a basic tool of computer algebra, and is a built-in function of most computer algebra systems. It is used, among others, for cylindrical algebraic decomposition, integration of rational functions and drawing of curves defined by a bivariate polynomial equation. The resultant of ''n'' homogeneous polynomials in ''n'' variables (also called multivariate resultant, or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Falling And Rising Factorials
In mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial :\begin (x)_n = x^\underline &= \overbrace^ \\ &= \prod_^n(x-k+1) = \prod_^(x-k) \,. \end The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial, (A reprint of the 1950 edition by Chelsea Publishing Co.) rising sequential product, or upper factorial) is defined as :\begin x^ = x^\overline &= \overbrace^ \\ &= \prod_^n(x+k-1) = \prod_^(x+k) \,. \end The value of each is taken to be 1 (an empty product) when . These symbols are collectively called factorial powers. The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation , where is a non-negative integer. It may represent ''either'' the rising or the falling factorial, with different articles and authors using different conventions. Pochhammer himself actually used with yet another meaning, namely to d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial Solutions Of P-recursive Equations
In mathematics a P-recursive equation can be solved for polynomial solutions. Sergei A. Abramov in 1989 and Marko Petkovšek in 1992 described an algorithm which finds all polynomial solutions of those recurrence equations with polynomial coefficients. The algorithm computes a ''degree bound'' for the solution in a first step. In a second step an ansatz for a polynomial of this degree is used and the unknown coefficients are computed by a system of linear equations. This article describes this algorithm. In 1995 Abramov, Bronstein and Petkovšek showed that the polynomial case can be solved more efficiently by considering power series solution of the recurrence equation in a specific power basis (i.e. not the ordinary basis (x^n)_). Other algorithms which compute rational or hypergeometric solutions of a linear recurrence equation with polynomial coefficients also use algorithms which compute polynomial solutions. Degree bound Let \mathbb be a field of characteristic zero and \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]