Abcoulomb
   HOME
*





Abcoulomb
The abcoulomb (abC or aC) or electromagnetic unit of charge (emu of charge) is the derived physical unit of electric charge in the cgs-emu system of units. One abcoulomb is equal to ten coulombs. The name "abcoulomb" was introduced by Kennelly in 1903 as a short form of ''(absolute) electromagnetic cgs unit of charge'' that was in use since the adoption of the cgs system in 1875.A.E. Kennelly (1903"Magnetic units and other subjects that might occupy attention at the next international electrical congress"''20th Annual Convention of the American Institute of Electrical Engineers, 1903'' accessed 10 December 2020 The abcoulomb was coherent with the cgs-emu system, in contrast to the coulomb, the practical unit of charge that had been adopted too in 1875. CGS-emu (or "electromagnetic cgs") units are one of several systems of electromagnetic units within the centimetre gram second system of units; others include CGS-esu, Gaussian units, and Lorentz–Heaviside units. In these o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Centimetre–gram–second System Of Units
The centimetre–gram–second system of units (abbreviated CGS or cgs) is a variant of the metric system based on the centimetre as the unit of length, the gram as the unit of mass, and the second as the unit of time. All CGS mechanical units are unambiguously derived from these three base units, but there are several different ways in which the CGS system was extended to cover electromagnetism. The CGS system has been largely supplanted by the MKS system based on the metre, kilogram, and second, which was in turn extended and replaced by the International System of Units (SI). In many fields of science and engineering, SI is the only system of units in use, but there remain certain subfields where CGS is prevalent. In measurements of purely mechanical systems (involving units of length, mass, force, energy, pressure, and so on), the differences between CGS and SI are straightforward and rather trivial; the unit-conversion factors are all powers of 10 as and . For example, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Centimetre%E2%80%93gram%E2%80%93second System Of Units
The centimetre–gram–second system of units (abbreviated CGS or cgs) is a variant of the metric system based on the centimetre as the unit of length, the gram as the unit of mass, and the second as the unit of time. All CGS mechanical units are unambiguously derived from these three base units, but there are several different ways in which the CGS system was extended to cover electromagnetism. The CGS system has been largely supplanted by the MKS system based on the metre, kilogram, and second, which was in turn extended and replaced by the International System of Units (SI). In many fields of science and engineering, SI is the only system of units in use, but there remain certain subfields where CGS is prevalent. In measurements of purely mechanical systems (involving units of length, mass, force, energy, pressure, and so on), the differences between CGS and SI are straightforward and rather trivial; the unit-conversion factors are all powers of 10 as and . For example, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coulomb
The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). In the present version of the SI it is equal to the electric charge delivered by a 1 ampere constant current in 1 second and to elementary charges, , (about ). Name and history By 1878, the British Association for the Advancement of Science had defined the volt, ohm, and farad, but not the coulomb. In 1881, the International Electrical Congress, now the International Electrotechnical Commission (IEC), approved the volt as the unit for electromotive force, the ampere as the unit for electric current, and the coulomb as the unit of electric charge. At that time, the volt was defined as the potential difference .e., what is nowadays called the "voltage (difference)"across a conductor when a current of one ampere dissipates one watt of power. The coulomb (later "absolute coulomb" or "abcoulomb" for disambiguation) was part of the EMU system of units. The "international coulo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electromagnetic Units
In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electricity and magnetism, two distinct but closely intertwined phenomena. In essence, electric forces occur between any two charged particles, causing an attraction between particles with opposite charges and repulsion between particles with the same charge, while magnetism is an interaction that occurs exclusively between ''moving'' charged particles. These two effects combine to create electromagnetic fields in the vicinity of charge particles, which can exert influence on other particles via the Lorentz force. At high energy, the weak force and electromagnetic force are unified as a single electroweak force. The electromagnetic force is responsible for many ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dyne
The dyne (symbol: dyn; ) is a derived unit of force specified in the centimetre–gram–second (CGS) system of units, a predecessor of the modern SI. History The name dyne was first proposed as a CGS unit of force in 1873 by a Committee of the British Association for the Advancement of Science. Definition The dyne is defined as "the force required to accelerate a mass of one gram at a rate of one centimetre per second squared". An equivalent definition of the dyne is "that force which, acting for one second, will produce a change of velocity of one centimetre per second in a mass of one gram". One dyne is equal to 10 micronewtons, 10−5 N or to 10 nsn (nano sthenes) in the old metre–tonne–second system of units. : 1 dyn = 1 g⋅cm/s2 = 10−5 kg⋅m/s2 = 10−5 N : 1 N = 1 kg⋅m/s2 = 105 g⋅cm/s2 = 105 dyn Use The dyne per centimetre is a unit traditionally used to measure surface tension. For example, the surface tension of distilled water is 71.99 dyn/c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abampere
The abampere (abA), also called the biot (Bi) after Jean-Baptiste Biot, is the derived electromagnetic unit of electric current in the emu-cgs system of units (electromagnetic cgs). One abampere corresponds to ten amperes in the SI system of units. An abampere of current in a circular path of one centimeter radius produces a magnetic field of 2π oersteds at the center of the circle. The name abampere was introduced by Kennelly in 1903 as a short name for the long name ''(absolute) electromagnetic cgs unit of current'' that was in use since the adoption of the cgs system in 1875.A.E. Kennelly (1903"Magnetic units and other subjects that might occupy attention at the next international electrical congress"''20th Annual Convention of the American Institute of Electrical Engineers, 1903'' The abampere was coherent with the emu-cgs system, in contrast to the ampere, the practical unit of current that had been adopted too in 1875. The emu-cgs (or "electromagnetic cgs") u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permeability (electromagnetism)
In electromagnetism, permeability is the measure of magnetization that a material obtains in response to an applied magnetic field. Permeability is typically represented by the (italicized) Greek letter ''μ''. The term was coined by William Thomson, 1st Baron Kelvin in 1872, and used alongside permittivity by Oliver Heaviside in 1885. The reciprocal of permeability is magnetic reluctivity. In SI units, permeability is measured in henries per meter (H/m), or equivalently in newtons per ampere squared (N/A2). The permeability constant ''μ''0, also known as the magnetic constant or the permeability of free space, is the proportionality between magnetic induction and magnetizing force when forming a magnetic field in a classical vacuum. A closely related property of materials is magnetic susceptibility, which is a dimensionless proportionality factor that indicates the degree of magnetization of a material in response to an applied magnetic field. Explanation In the mac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Statcoulomb
The franklin (Fr) or statcoulomb (statC) electrostatic unit of charge (esu) is the physical unit for electrical charge used in the cgs-esu and Gaussian units. It is a derived unit given by : 1 statC = 1 dyn1/2⋅cm = 1 cm3/2⋅g1/2⋅s−1. That is, it is defined so that the Coulomb constant becomes a dimensionless quantity equal to 1. It can be converted using : 1 newton = 105 dyne : 1 cm = 10−2 m The SI system of units uses the coulomb (C) instead. The conversion between C and statC is different in different contexts. The most common contexts are: * For electric charge: *: 1 C ≘ ≈ *: ⇒ 1 statC ≘ ~. * For electric flux (ΦD): *: 1 C ≘ 4π × ≈ *: ⇒ 1 statC ≘ ~. The symbol "≘" ('corresponds to') is used instead of "=" because the two sides are not interchangeable, as discussed below. The number is 10 times the numeric value of the speed of light expressed in meters/second, and the conversions are ''exac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Centimetre Gram Second System Of Units
330px, Different lengths as in respect to the Electromagnetic spectrum, measured by the Metre and its deriveds scales. The Microwave are in-between 1 meter to 1 millimeter. A centimetre (international spelling) or centimeter (American spelling) (SI symbol cm) is a Units of measurement, unit of length in the International System of Units (SI), equal to one hundredth of a metre, ''centi'' being the SI prefix for a factor of . The centimetre was the base unit of length in the now deprecated centimetre–gram–second (CGS) system of units. Though for many physical quantities, SI prefixes for factors of 103—like ''milli-'' and ''kilo-''—are often preferred by technicians, the centimetre remains a practical unit of length for many everyday measurements. A centimetre is approximately the width of the fingernail of an average adult person. Equivalence to other units of length : One millilitre is defined as one cubic centimetre, under the SI system of units. Other uses In a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian Units
Gaussian units constitute a metric system of physical units. This system is the most common of the several electromagnetic unit systems based on cgs (centimetre–gram–second) units. It is also called the Gaussian unit system, Gaussian-cgs units, or often just cgs units. The term "cgs units" is ambiguous and therefore to be avoided if possible: there are several variants of cgs with conflicting definitions of electromagnetic quantities and units. SI units predominate in most fields, and continue to increase in popularity at the expense of Gaussian units. Alternative unit systems also exist. Conversions between quantities in Gaussian and SI units are direct unit conversions, because the quantities themselves are defined differently in each system. This means that the equations expressing physical laws of electromagnetism—such as Maxwell's—will change depending on the system of units employed. As an example, quantities that are dimensionless in one system may have dimension ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]