UYK-8
   HOME
*





UYK-8
The AN/UYK-8 was a UNIVAC computer. Development In April 1967, UNIVAC received a contract from the U.S. Navy for design, development, testing and delivery of the AN/UYK-8 microelectronics computer for use with the AN/TYA-20. The AN/UYK-8 was built to replace the CP-808 (Marine Corps air cooled AN/USQ-20 variant) in the Beach Relay Link-11 communication system, the AN/TYQ-3 in a AN/TYA-20 Technical It used the same 30- bit words and instruction set as the AN/USQ-17 and AN/USQ-20 Naval Tactical Data System (NTDS) computers, built with " first generation integrated circuits". This made it about one quarter of the volume of the AN/USQ-20. It had two processors instead of just one. Instructions were represented as 30-bit words, in the following format: f 6 bits function code j 3 bits jump condition designator k 3 bits partial word designator b 3 bits which seven index register to use (B0=non used) s 2 bits which S (5bits) register to use S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Naval Tactical Data System
Naval Tactical Data System (NTDS) was a computerized information processing system developed by the United States Navy in the 1950s and first deployed in the early 1960s for use in combat ships. It took reports from multiple sensors on different ships and collated it to produce a single unified map of the battlespace. This information could then be relayed back to the ships and to the weapons operators. Reason for development Background Warships have compartments known as Combat Information Centers, or CICs, that collect, sort and then communicate all of the battlefield information known to that ship. Information about targets would be forwarded to the CIC by the operators of the radar and sonar systems, where crewmen would use this information to update a shared map. Commanders used the map to direct weapons to particular targets. The system was similar to the Battle of Britain Bunker system, but on a smaller scale. There were two major problems with this system. One was that e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


AN/USQ-17
The AN/USQ-17 or Naval Tactical Data System (NTDS) computer referred to in Sperry Rand documents as the Univac M-460, was Seymour Cray's last design for UNIVAC. UNIVAC later released a commercial version, the UNIVAC 490 and that system was later upgraded to a multiprocessor configuration as the 494. Overview The machine was the size and shape of a refrigerator, about four feet high (roughly 1.20 meters), with a hinged lid for access. However, shortly after completing the prototype design Cray left to join Control Data Corporation. When the Navy awarded Sperry Rand a US$50 million contract to build the AN/USQ-17, Univac engineers redesigned the entire machine from scratch using silicon transistors (retaining the instruction set so that programs developed for the original machine would still run on the new one). As part of the redesign it was decided to improve access, and the second version was designed to stand upright, like an old fashioned double-door refrigerator, about six fee ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joint Electronics Type Designation System
The Joint Electronics Type Designation System (JETDS), which was previously known as the Joint Army-Navy Nomenclature System (AN System. JAN) and the Joint Communications-Electronics Nomenclature System, is a method developed by the U.S. War Department during World War II for assigning an unclassified designator to electronic equipment. In 1957, the JETDS was formalized in MIL-STD-196. Computer software and commercial unmodified electronics for which the manufacturer maintains design control are not covered. Applicability Electronic material, from a military point of view, generally includes those electronic devices employed in data processing, detection and tracking (underwater, sea, land-based, air and space), recognition and identification, communications, aids to navigation, weapons control and evaluation, flight control, and electronics countermeasures. Nomenclature is assigned to: * Electronic materiel of military design * Commercial electronic materiel that has been modifi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kilo-
Kilo is a decimal unit prefix in the metric system denoting multiplication by one thousand (103). It is used in the International System of Units, where it has the symbol k, in lowercase. The prefix ''kilo'' is derived from the Greek word (), meaning "thousand". In 19th century English it was sometimes spelled chilio, in line with a puristic opinion by Thomas Young. As an opponent of suggestions to introduce the metric system in Britain, he qualified the nomenclature adopted in France as barbarous. Examples * one kilogram (kg) is 1000 grams * one kilometre (km) is 1000 metres * one kilojoule (kJ) is 1000 joules * one kilolitre (kL) is 1000 litres * one kilobaud (kBd) is 1000 baud * one kilohertz (kHz) is 1000 hertz * one kilobit (kb) is 1000 bits * one kilobyte (kB) is 1000 bytes * one kiloohm is (kΩ) is 1000 ohms * one kilosecond (ks) is 1000 seconds *one kilotonne (kt) is 1000 tonnes By extension, currencies are also sometimes preceded by the prefix kilo-: * one kil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

UNIVAC Hardware
UNIVAC (Universal Automatic Computer) was a line of electronic digital stored-program computers starting with the products of the Eckert–Mauchly Computer Corporation. Later the name was applied to a division of the Remington Rand company and successor organizations. The BINAC, built by the Eckert–Mauchly Computer Corporation, was the first general-purpose computer for commercial use, but it was not a success. The last UNIVAC-badged computer was produced in 1986. History and structure J. Presper Eckert and John Mauchly built the ENIAC (Electronic Numerical Integrator and Computer) at the University of Pennsylvania's Moore School of Electrical Engineering between 1943 and 1946. A 1946 patent rights dispute with the university led Eckert and Mauchly to depart the Moore School to form the Electronic Control Company, later renamed Eckert–Mauchly Computer Corporation (EMCC), based in Philadelphia, Pennsylvania. That company first built a computer called BINAC (BINary Automat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

History Of Computing Hardware
The history of computing hardware covers the developments from early simple devices to aid calculation to modern day computers. Before the 20th century, most calculations were done by humans. The first aids to computation were purely mechanical devices which required the operator to set up the initial values of an elementary arithmetic operation, then manipulate the device to obtain the result. Later, computers represented numbers in a continuous form (e.g. distance along a scale, rotation of a shaft, or a voltage). Numbers could also be represented in the form of digits, automatically manipulated by a mechanism. Although this approach generally required more complex mechanisms, it greatly increased the precision of results. The development of transistor technology and then the integrated circuit chip led to a series of breakthroughs, starting with transistor computers and then integrated circuit computers, causing digital computers to largely replace analog computers. Met ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of UNIVAC Products
A ''list'' is any set of items in a row. List or lists may also refer to: People * List (surname) Organizations * List College, an undergraduate division of the Jewish Theological Seminary of America * SC Germania List, German rugby union club Other uses * Angle of list, the leaning to either port or starboard of a ship * List (information), an ordered collection of pieces of information ** List (abstract data type), a method to organize data in computer science * List on Sylt, previously called List, the northernmost village in Germany, on the island of Sylt * ''List'', an alternative term for ''roll'' in flight dynamics * To ''list'' a building, etc., in the UK it means to designate it a listed building that may not be altered without permission * Lists (jousting), the barriers used to designate the tournament area where medieval knights jousted * ''The Book of Lists'', an American series of books with unusual lists See also * The List (other) * Listing (di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Index Register
An index register in a computer's CPU is a processor register (or an assigned memory location) used for pointing to operand addresses during the run of a program. It is useful for stepping through strings and arrays. It can also be used for holding loop iterations and counters. In some architectures it is used for read/writing blocks of memory. Depending on the architecture it maybe a dedicated index register or a general-purpose register. Some instruction sets allow more than one index register to be used; in that case additional instruction fields may specify which index registers to use. Generally, the contents of an index register is added to (in some cases subtracted from) an ''immediate'' address (that can be part of the instruction itself or held in another register) to form the "effective" address of the actual data (operand). Special instructions are typically provided to test the index register and, if the test fails, increments the index register by an immediate con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Accumulator (computing)
In a computer's central processing unit (CPU), the accumulator is a register in which intermediate arithmetic logic unit results are stored. Without a register like an accumulator, it would be necessary to write the result of each calculation (addition, multiplication, shift, etc.) to main memory, perhaps only to be read right back again for use in the next operation. Access to main memory is slower than access to a register like an accumulator because the technology used for the large main memory is slower (but cheaper) than that used for a register. Early electronic computer systems were often split into two groups, those with accumulators and those without. Modern computer systems often have multiple general-purpose registers that can operate as accumulators, and the term is no longer as common as it once was. However, to simplify their design, a number of special-purpose processors still use a single accumulator. Basic concept Mathematical operations often take place i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Processor Register
A processor register is a quickly accessible location available to a computer's processor. Registers usually consist of a small amount of fast storage, although some registers have specific hardware functions, and may be read-only or write-only. In computer architecture, registers are typically addressed by mechanisms other than main memory, but may in some cases be assigned a memory address e.g. DEC PDP-10, ICT 1900. Almost all computers, whether load/store architecture or not, load data from a larger memory into registers where it is used for arithmetic operations and is manipulated or tested by machine instructions. Manipulated data is then often stored back to main memory, either by the same instruction or by a subsequent one. Modern processors use either static or dynamic RAM as main memory, with the latter usually accessed via one or more cache levels. Processor registers are normally at the top of the memory hierarchy, and provide the fastest way to access data. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnetic Core Memory
Magnetic-core memory was the predominant form of random-access computer memory for 20 years between about 1955 and 1975. Such memory is often just called core memory, or, informally, core. Core memory uses toroids (rings) of a hard magnetic material (usually a semi-hard ferrite) as transformer cores, where each wire threaded through the core serves as a transformer winding. Two or more wires pass through each core. Magnetic hysteresis allows each of the cores to "remember", or store a state. Each core stores one bit of information. A core can be magnetized in either the clockwise or counter-clockwise direction. The value of the bit stored in a core is zero or one according to the direction of that core's magnetization. Electric current pulses in some of the wires through a core allow the direction of the magnetization in that core to be set in either direction, thus storing a one or a zero. Another wire through each core, the sense wire, is used to detect whether the core ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alphanumeric
Alphanumericals or alphanumeric characters are a combination of alphabetical and numerical characters. More specifically, they are the collection of Latin letters and Arabic digits. An alphanumeric code is an identifier made of alphanumeric characters. Merriam-Webster suggests that the term "alphanumeric" may often additionally refer to other symbols, such as punctuation and mathematical symbols. In the POSIX/C locale, there are either 36 (A–Z and 0–9, case insensitive) or 62 (A–Z, a–z and 0–9, case-sensitive) alphanumeric characters. Subsets of alphanumeric used in human interfaces When a string of mixed alphabets and numerals is presented for human interpretation, ambiguities arise. The most obvious is the similarity of the letters I, O and Q to the numbers 1 and 0. Therefore, depending on the application, various subsets of the alphanumeric were adopted to avoid misinterpretation by humans. In passenger aircraft, aircraft seat maps and seats were designated by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]