HOME
*





Atkinson's Theorem
In operator theory, Atkinson's theorem (named for Frederick Valentine Atkinson) gives a characterization of Fredholm operators. The theorem Let ''H'' be a Hilbert space and ''L''(''H'') the set of bounded operators on ''H''. The following is the classical definition of a Fredholm operator: an operator ''T'' ∈ ''L''(''H'') is said to be a Fredholm operator if the kernel Ker(''T'') is finite-dimensional, Ker(''T*'') is finite-dimensional (where ''T*'' denotes the adjoint of ''T''), and the range Ran(''T'') is closed. Atkinson's theorem states: :A ''T'' ∈ ''L''(''H'') is a Fredholm operator if and only if ''T'' is invertible modulo compact perturbation, i.e. ''TS'' = ''I'' + ''C''1 and ''ST'' = ''I'' + ''C''2 for some bounded operator ''S'' and compact operators ''C''1 and ''C''2. In other words, an operator ''T'' ∈ ''L''(''H'') is Fredholm, in the classical sense, if and only if its projection in the Calkin algebra is invertible. Sketch of proof The outline of a proof ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Operator Theory
In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra. The description of operator algebras is part of operator theory. Single operator theory Single operator theory deals with the properties and classification of operators, considered one at a time. For example, the classification of normal operators in terms of their spectra falls into this category. Spectrum of operators The spectral theorem is any of a number of results about linear operators or about matrices. In broad terms the spectral theorem provides cond ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frederick Valentine Atkinson
Frederick Valentine "Derick" Atkinson (25 January 1916 – 13 November 2002) was a British mathematician, formerly of the University of Toronto, Canada, where he spent most of his career. Atkinson's theorem and Atkinson–Wilcox theorem are named after him. His PhD advisor at Oxford was Edward Charles Titchmarsh. Early life and education The following synopsis is condensed (with permission) from Mingarelli's tribute to Atkinson. He attended St Paul's School, London from 1929–1934. The High Master of St. Paul's once wrote of Atkinson: "Extremely promising: He should make a brilliant mathematician"! Atkinson attended The Queen's College, Oxford in 1934 with a scholarship. During his stay at Queen's, he was secretary of the Chinese Student Society, and a member of the Indian Student Society. Auto-didactic when it came to languages, he taught himself and became fluent in Latin, Ancient Greek, Urdu, German, Hungarian, and Russian with some proficiency in Spanish, Italian, and Fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fredholm Operator
In mathematics, Fredholm operators are certain operators that arise in the Fredholm theory of integral equations. They are named in honour of Erik Ivar Fredholm. By definition, a Fredholm operator is a bounded linear operator ''T'' : ''X'' → ''Y'' between two Banach spaces with finite-dimensional kernel \ker T and finite-dimensional (algebraic) cokernel \mathrm\,T = Y/\mathrm\,T, and with closed range \mathrm\,T. The last condition is actually redundant. The '' index'' of a Fredholm operator is the integer : \mathrm\,T := \dim \ker T - \mathrm\,\mathrm\,T or in other words, : \mathrm\,T := \dim \ker T - \mathrm\,\mathrm\,T. Properties Intuitively, Fredholm operators are those operators that are invertible "if finite-dimensional effects are ignored." The formally correct statement follows. A bounded operator ''T'' : ''X'' → ''Y'' between Banach spaces ''X'' and ''Y'' is Fredholm if and only if it is invertible modulo compact ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term ''Hilbert space'' for the abstract concept that under ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kernel (linear Operator)
In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the linear subspace of the domain of the map which is mapped to the zero vector. That is, given a linear map between two vector spaces and , the kernel of is the vector space of all elements of such that , where denotes the zero vector in , or more symbolically: :\ker(L) = \left\ . Properties The kernel of is a linear subspace of the domain .Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in , , and Strang's lectures. In the linear map L : V \to W, two elements of have the same image in if and only if their difference lies in the kernel of , that is, L\left(\mathbf_1\right) = L\left(\mathbf_2\right) \quad \text \quad L\left(\mathbf_1-\mathbf_2\right) = \mathbf. From this, it follows that the image of is isomorphic to the quotient of by the ke ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hermitian Adjoint
In mathematics, specifically in operator theory, each linear operator A on a Euclidean vector space defines a Hermitian adjoint (or adjoint) operator A^* on that space according to the rule :\langle Ax,y \rangle = \langle x,A^*y \rangle, where \langle \cdot,\cdot \rangle is the inner product on the vector space. The adjoint may also be called the Hermitian conjugate or simply the Hermitian after Charles Hermite. It is often denoted by in fields like physics, especially when used in conjunction with bra–ket notation in quantum mechanics. In finite dimensions where operators are represented by matrices, the Hermitian adjoint is given by the conjugate transpose (also known as the Hermitian transpose). The above definition of an adjoint operator extends verbatim to bounded linear operators on Hilbert spaces H. The definition has been further extended to include unbounded '' densely defined'' operators whose domain is topologically dense in—but not necessarily equal to— ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Range Of A Function
In mathematics, the range of a function may refer to either of two closely related concepts: * The codomain of the function * The image of the function Given two sets and , a binary relation between and is a (total) function (from to ) if for every in there is exactly one in such that relates to . The sets and are called domain and codomain of , respectively. The image of is then the subset of consisting of only those elements of such that there is at least one in with . Terminology As the term "range" can have different meanings, it is considered a good practice to define it the first time it is used in a textbook or article. Older books, when they use the word "range", tend to use it to mean what is now called the codomain. More modern books, if they use the word "range" at all, generally use it to mean what is now called the image. To avoid any confusion, a number of modern books don't use the word "range" at all. Elaboration and example Given a functi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact Operator
In functional analysis, a branch of mathematics, a compact operator is a linear operator T: X \to Y, where X,Y are normed vector spaces, with the property that T maps bounded subsets of X to relatively compact subsets of Y (subsets with compact closure in Y). Such an operator is necessarily a bounded operator, and so continuous. Some authors require that X,Y are Banach, but the definition can be extended to more general spaces. Any bounded operator ''T'' that has finite rank is a compact operator; indeed, the class of compact operators is a natural generalization of the class of finite-rank operators in an infinite-dimensional setting. When ''Y'' is a Hilbert space, it is true that any compact operator is a limit of finite-rank operators, so that the class of compact operators can be defined alternatively as the closure of the set of finite-rank operators in the norm topology. Whether this was true in general for Banach spaces (the approximation property) was an unsolved quest ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Calkin Algebra
In functional analysis, the Calkin algebra, named after John Williams Calkin, is the quotient of ''B''(''H''), the ring of bounded linear operators on a separable infinite-dimensional Hilbert space ''H'', by the ideal ''K''(''H'') of compact operators. Here the addition in ''B''(''H'') is addition of operators and the multiplication in ''B''(''H'') is composition of operators; it is easy to verify that these operations make ''B''(''H'') into a ring. When scalar multiplication is also included, ''B''(''H'') becomes in fact an algebra over the same field over which ''H'' is a Hilbert space. Properties * Since ''K''(''H'') is a maximal norm-closed ideal in ''B''(''H''), the Calkin algebra is simple. In fact, ''K''(''H'') is the only closed ideal in ''B''(''H''). * As a quotient of a C*-algebra by a two-sided ideal, the Calkin algebra is a C*-algebra itself and there is a short exact sequence ::0 \to K(H) \to B(H) \to B(H)/K(H) \to 0 :which induces a six-term cyclic exact sequen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Open Mapping Theorem (functional Analysis)
In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem (named after Stefan Banach and Juliusz Schauder), is a fundamental result which states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map. Classical (Banach space) form This proof uses the Baire category theorem, and completeness of both X and Y is essential to the theorem. The statement of the theorem is no longer true if either space is just assumed to be a normed space, but is true if X and Y are taken to be Fréchet spaces. Suppose A : X \to Y is a surjective continuous linear operator. In order to prove that A is an open map, it is sufficient to show that A maps the open unit ball in X to a neighborhood of the origin of Y. Let U = B_1^X(0), V = B_1^Y(0). Then X = \bigcup_ k U. Since A is surjective: Y = A(X) = A\left(\bigcup_ k U\right) = \bigcup_ A(kU). But Y is Banach so by Baire's category t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite-rank Operator
In functional analysis, a branch of mathematics, a finite-rank operator is a bounded linear operator between Banach spaces whose range is finite-dimensional. Finite-rank operators on a Hilbert space A canonical form Finite-rank operators are matrices (of finite size) transplanted to the infinite dimensional setting. As such, these operators may be described via linear algebra techniques. From linear algebra, we know that a rectangular matrix, with complex entries, ''M'' ∈ C''n'' × ''m'' has rank 1 if and only if ''M'' is of the form :M = \alpha \cdot u v^*, \quad \mbox \quad \, u \, = \, v\, = 1 \quad \mbox \quad \alpha \geq 0 . Exactly the same argument shows that an operator ''T'' on a Hilbert space ''H'' is of rank 1 if and only if :T h = \alpha \langle h, v\rangle u \quad \mbox \quad h \in H , where the conditions on ''α'', ''u'', and ''v'' are the same as in the finite dimensional case. Therefore, by induction, an operator ''T'' of finite rank ''n'' takes the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectral Theory Of Compact Operators
In functional analysis, compact operators are linear operators on Banach spaces that map bounded sets to relatively compact sets. In the case of a Hilbert space ''H'', the compact operators are the closure of the finite rank operators in the uniform operator topology. In general, operators on infinite-dimensional spaces feature properties that do not appear in the finite-dimensional case, i.e. for matrices. The compact operators are notable in that they share as much similarity with matrices as one can expect from a general operator. In particular, the spectral properties of compact operators resemble those of square matrices. This article first summarizes the corresponding results from the matrix case before discussing the spectral properties of compact operators. The reader will see that most statements transfer verbatim from the matrix case. The spectral theory of compact operators was first developed by F. Riesz. Spectral theory of matrices The classical result for squar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]