HOME
*





Apéry's Constant
In mathematics, Apéry's constant is the sum of the reciprocals of the positive cubes. That is, it is defined as the number : \begin \zeta(3) &= \sum_^\infty \frac \\ &= \lim_ \left(\frac + \frac + \cdots + \frac\right), \end where is the Riemann zeta function. It has an approximate value of : . The constant is named after Roger Apéry. It arises naturally in a number of physical problems, including in the second- and third-order terms of the electron's gyromagnetic ratio using quantum electrodynamics. It also arises in the analysis of random minimum spanning trees and in conjunction with the gamma function when solving certain integrals involving exponential functions in a quotient, which appear occasionally in physics, for instance, when evaluating the two-dimensional case of the Debye model and the Stefan–Boltzmann law. Irrational number was named ''Apéry's constant'' after the French mathematician Roger Apéry, who proved in 1978 that it is an ir ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subsequences
In mathematics, a subsequence of a given sequence is a sequence that can be derived from the given sequence by deleting some or no elements without changing the order of the remaining elements. For example, the sequence \langle A,B,D \rangle is a subsequence of \langle A,B,C,D,E,F \rangle obtained after removal of elements C, E, and F. The relation of one sequence being the subsequence of another is a preorder. Subsequences can contain consecutive elements which were not consecutive in the original sequence. A subsequence which consists of a consecutive run of elements from the original sequence, such as \langle B,C,D \rangle, from \langle A,B,C,D,E,F \rangle, is a substring. The substring is a refinement of the subsequence. The list of all subsequences for the word "apple" would be "''a''", "''ap''", "''al''", "''ae''", "''app''", "''apl''", "''ape''", "''ale''", "''appl''", "''appe''", "''aple''", "''apple''", "''p''", "''pp''", "''pl''", "''pe''", "''ppl''", "''ppe''", "''ple' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Adrien-Marie Legendre
Adrien-Marie Legendre (; ; 18 September 1752 – 9 January 1833) was a French mathematician who made numerous contributions to mathematics. Well-known and important concepts such as the Legendre polynomials and Legendre transformation are named after him. Life Adrien-Marie Legendre was born in Paris on 18 September 1752 to a wealthy family. He received his education at the Collège Mazarin in Paris, and defended his thesis in physics and mathematics in 1770. He taught at the École Militaire in Paris from 1775 to 1780 and at the École Normale Supérieure, École Normale from 1795. At the same time, he was associated with the Bureau des Longitudes. In 1782, the Prussian Academy of Sciences, Berlin Academy awarded Legendre a prize for his treatise on projectiles in resistant media. This treatise also brought him to the attention of Lagrange. The ''Académie des sciences'' made Legendre an adjoint member in 1783 and an associate in 1785. In 1789, he was elected a Fellow of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polygamma Function
In mathematics, the polygamma function of order is a meromorphic function on the complex numbers \mathbb defined as the th derivative of the logarithm of the gamma function: :\psi^(z) := \frac \psi(z) = \frac \ln\Gamma(z). Thus :\psi^(z) = \psi(z) = \frac holds where is the digamma function and is the gamma function. They are holomorphic on \mathbb \backslash\mathbb_. At all the nonpositive integers these polygamma functions have a pole of order . The function is sometimes called the trigamma function. Integral representation When and , the polygamma function equals :\begin \psi^(z) &= (-1)^\int_0^\infty \frac\,\mathrmt \\ &= -\int_0^1 \frac(\ln t)^m\,\mathrmt\\ &= (-1)^m!\zeta(m+1,z) \end where \zeta(s,q) is the Hurwitz zeta function. This expresses the polygamma function as the Laplace transform of . It follows from Bernstein's theorem on monotone functions that, for and real and non-negative, is a completely monotone function. Setting in the above formula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simon Plouffe
Simon Plouffe (born June 11, 1956) is a mathematician who discovered the Bailey–Borwein–Plouffe formula (BBP algorithm) which permits the computation of the ''n''th binary digit of π, in 1995. His other 2022 formula allows extracting the ''n''th digit of in decimal. He was born in Saint-Jovite, Quebec. He co-authored ''The Encyclopedia of Integer Sequences'', made into the web site On-Line Encyclopedia of Integer Sequences dedicated to integer sequences later in 1995. In 1975, Plouffe broke the world record for memorizing digits of π by reciting 4096 digits, a record which stood until 1977. See also *Fabrice Bellard, who discovered in 1997 a faster formula to compute pi. *PiHex PiHex was a distributed computing project organized by Colin Percival to calculate specific bits of . 1,246 contributors used idle time slices on almost two thousand computers to make its calculations. The software used for the project made use of ... Notes External links * * Plouffe website ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Logarithmic Space
In computational complexity theory, L (also known as LSPACE or DLOGSPACE) is the complexity class containing decision problems that can be solved by a deterministic Turing machine using a logarithmic amount of writable memory space., Definition 8.12, p. 295., p. 177. Formally, the Turing machine has two tapes, one of which encodes the input and can only be read, whereas the other tape has logarithmic size but can be read as well as written. Logarithmic space is sufficient to hold a constant number of pointers into the input and a logarithmic number of boolean flags, and many basic logspace algorithms use the memory in this way. Complete problems and logical characterization Every non-trivial problem in L is complete under log-space reductions, so weaker reductions are required to identify meaningful notions of L-completeness, the most common being first-order reductions. A 2004 result by Omer Reingold shows that USTCON, the problem of whether there exists a path ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Time
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is generally expresse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Binary Digit
Binary may refer to: Science and technology Mathematics * Binary number, a representation of numbers using only two digits (0 and 1) * Binary function, a function that takes two arguments * Binary operation, a mathematical operation that takes two arguments * Binary relation, a relation involving two elements * Binary-coded decimal, a method for encoding for decimal digits in binary sequences * Finger binary, a system for counting in binary numbers on the fingers of human hands Computing * Binary code, the digital representation of text and data * Bit, or binary digit, the basic unit of information in computers * Binary file, composed of something other than human-readable text ** Executable, a type of binary file that contains machine code for the computer to execute * Binary tree, a computer tree data structure in which each node has at most two children Astronomy * Binary star, a star system with two stars in it * Binary planet, two planetary bodies of compara ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Andrey Markov
Andrey Andreyevich Markov, first name also spelled "Andrei", in older works also spelled Markoff) (14 June 1856 – 20 July 1922) was a Russian mathematician best known for his work on stochastic processes. A primary subject of his research later became known as the Markov chain. Markov and his younger brother Vladimir Andreevich Markov (1871–1897) proved the Markov brothers' inequality. His son, another Andrey Markov (Soviet mathematician), Andrey Andreyevich Markov (1903–1979), was also a notable mathematician, making contributions to constructive mathematics and Recursion#Functional recursion, recursive function theory. Biography Andrey Markov was born on 14 June 1856 in Russia. He attended the St. Petersburg Grammar School, where some teachers saw him as a rebellious student. In his academics he performed poorly in most subjects other than mathematics. Later in life he attended Saint Petersburg Imperial University (now Saint Petersburg State University). Among his t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Known Digits
Knowledge can be defined as awareness of facts or as practical skills, and may also refer to familiarity with objects or situations. Knowledge of facts, also called propositional knowledge, is often defined as true belief that is distinct from opinion or guesswork by virtue of justification. While there is wide agreement among philosophers that propositional knowledge is a form of true belief, many controversies in philosophy focus on justification: whether it is needed at all, how to understand it, and whether something else besides it is needed. These controversies intensified due to a series of thought experiments by Edmund Gettier and have provoked various alternative definitions. Some of them deny that justification is necessary and replace it, for example, with reliability or the manifestation of cognitive virtues. Others contend that justification is needed but formulate additional requirements, for example, that no defeaters of the belief are present or that the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]