HOME
*





Apparent Horizon
In general relativity, an apparent horizon is a surface that is the boundary between light rays that are directed outwards and moving outwards and those directed outward but moving inward. Apparent horizons are not invariant properties of spacetime, and in particular, they are distinct from event horizons. Within an apparent horizon, light does not move outward; this is in contrast with the event horizon. In a dynamical spacetime, there can be outgoing light rays exterior to an apparent horizon (but still interior to the event horizon). An apparent horizon is a ''local'' notion of the boundary of a black hole, whereas an event horizon is a global notion. The notion of a horizon in general relativity is subtle and depends on fine distinctions. Definition The notion of an "apparent horizon" begins with the notion of a trapped null surface. A (compact, orientable, spacelike) surface always has two independent forward-in-time pointing, lightlike, normal directions. For example, a (sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the ' is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations. Newton's law of universal gravitation, which describes classical gravity, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass distributions. Some predictions of general relativity, however, are beyond Newton's law of universal gravitat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Relativity
Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena governed by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves. Overview A primary goal of numerical relativity is to study spacetimes whose exact form is not known. The spacetimes so found computationally can either be fully dynamical, stationary or static and may contain matter fields or vacuum. In the case of stationary and static solutions, numerical methods may also be used to study the stability of the equilibrium spacetimes. In the case of dynamical spacetimes, the problem may be divided into the initial value problem and the evolution, each requiring different methods. Numeri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Naked Singularity
In general relativity, a naked singularity is a hypothetical gravitational singularity without an event horizon. In a black hole, the singularity is completely enclosed by a boundary known as the event horizon, inside which the curvature of spacetime caused by the singularity is so strong that light cannot escape. Hence, objects inside the event horizon—including the singularity itself—cannot be directly observed. A naked singularity, by contrast, would be observable from the outside. The theoretical existence of naked singularities is important because their existence would mean that it would be possible to observe the collapse of an object to ''infinite density''. It would also cause foundational problems for general relativity, because general relativity cannot make predictions about the evolution of space-time near a singularity. In generic black holes, this is not a problem, as an outside viewer cannot observe the space-time within the event horizon. Naked singularities h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Killing Horizon
In physics, a Killing horizon is a geometrical construct used in general relativity and its generalizations to delineate spacetime boundaries without reference to the dynamic Einstein field equations. Mathematically a Killing horizon is a null hypersurface In relativity and in pseudo-Riemannian geometry, a null hypersurface is a hypersurface whose normal vector at every point is a null vector (has zero length with respect to the local metric tensor). A light cone is an example. An alternative ch ... defined by the vanishing of the norm of a Killing vector field (both are named after Wilhelm Killing). It can also be defined as a null hypersurface generated by a Killing vector, which in turn is null at that surface. After Stephen Hawking, Hawking showed that quantum field theory in curved spacetime (without reference to the Einstein field equations) predicted that a black hole formed by collapse will emit Hawking radiation, thermal radiation, it became clear that there is an une ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Photon Sphere
A photon sphere or photon circle is an area or region of space where gravity is so strong that photons are forced to travel in orbits, which is also sometimes called the last photon orbit. The radius of the photon sphere, which is also the lower bound for any stable orbit, is, for a Schwarzschild black hole, : r = \frac = \frac, where is the gravitational constant, is the black-hole mass, and is the speed of light in vacuum and is the Schwarzschild radius (the radius of the event horizon); see below for a derivation of this result. This equation entails that photon spheres can only exist in the space surrounding an extremely compact object (a black hole or possibly an "ultracompact" neutron star). The photon sphere is located farther from the center of a black hole than the event horizon. Within a photon sphere, it is possible to imagine a photon that's emitted from the back of one's head, orbiting the black hole, only then to be intercepted by the person's eyes, allowing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cauchy Horizon
In physics, a Cauchy horizon is a light-like boundary of the domain of validity of a Cauchy problem (a particular boundary value problem of the theory of partial differential equations). One side of the horizon contains closed space-like geodesics and the other side contains closed time-like geodesics. The concept is named after Augustin-Louis Cauchy. Under the averaged weak energy condition (AWEC), Cauchy horizons are inherently unstable. However, cases of AWEC violation, such as the Casimir effect caused by periodic boundary conditions, do exist, and since the region of spacetime inside the Cauchy horizon has closed timelike curves it is subject to periodic boundary conditions. If the spacetime inside the Cauchy horizon violates AWEC, then the horizon becomes stable and frequency boosting effects would be canceled out by the tendency of the spacetime to act as a divergent lens. Were this conjecture to be shown empirically true, it would provide a counter-example to the strong ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ergosphere
file:Ergosphere_and_event_horizon_of_a_rotating_black_hole_(no_animation).gif, 300px, In the ergosphere (shown here in light gray), the component ''gtt'' is negative, i.e., acts like a purely spatial metric component. Consequently, timelike or lightlike worldlines within this region must co-rotate with the inner mass. Kerr–Newman metric#Alternative .28Kerr.E2.80.93Schild.29 formulation, Cartesian Kerr–Schild coordinates, equatorial perspective. The ergosphere is a region located outside a rotating black hole's outer event horizon. Its name was proposed by Remo Ruffini and John Archibald Wheeler during the Les Houches lectures in 1971 and is derived from the Greek word (''ergon''), which means "work". It received this name because it is theoretically possible to Penrose process, extract energy and mass from this region. The ergosphere touches the event horizon at the poles of a rotating black hole and extends to a greater radius at the equator. A black hole with modest angular ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trapped Null Surface
Closed trapped surfaces are a concept used in black hole solutions of general relativity which describe the inner region of an event horizon. Roger Penrose defined the notion of closed trapped surfaces in 1965. A trapped surface is one where light is not moving away from the black hole. The boundary of the union of all trapped surfaces around a black hole is called an apparent horizon. A related term trapped null surface is often used interchangeably. However, when discussing causal horizons, trapped null surfaces are defined as only null vector fields giving rise to null surfaces. But marginally trapped surfaces may be spacelike, timelike or null. Definition They are spacelike surfaces (topological spheres, tubes, etc.) with restricted bounds, their area tending to decrease locally along any possible future direction and with a dual definition with respect to the past. The trapped surface is a spacelike surface of co-dimension 2, in a Lorentzian spacetime. It follows that any ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Particle Horizon
The particle horizon (also called the cosmological horizon, the comoving horizon (in Dodelson's text), or the cosmic light horizon) is the maximum distance from which light from particles could have traveled to the observer in the age of the universe. Much like the concept of a terrestrial horizon, it represents the boundary between the observable and the unobservable regions of the universe, so its distance at the present epoch defines the size of the observable universe. Due to the expansion of the universe, it is not simply the age of the universe times the speed of light (approximately 13.8 billion light-years), but rather the speed of light times the conformal time. The existence, properties, and significance of a cosmological horizon depend on the particular cosmological model. Conformal time and the particle horizon In terms of comoving distance, the particle horizon is equal to the conformal time \eta that has passed since the Big Bang, times the speed of light c. In genera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Event Horizon
In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s. In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact objects that even light cannot escape. At that time, the Newtonian theory of gravitation and the so-called corpuscular theory of light were dominant. In these theories, if the escape velocity of the gravitational influence of a massive object exceeds the speed of light, then light originating inside or from it can escape temporarily but will return. In 1958, David Finkelstein used general relativity to introduce a stricter definition of a local black hole event horizon as a boundary beyond which events of any kind cannot affect an outside observer, leading to information and firewall paradoxes, encouraging the re-examination of the concept of local event horizons and the notion of black holes. Several theories were subsequently developed, som ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cosmological Horizon
A cosmological horizon is a measure of the distance from which one could possibly retrieve information. This observable constraint is due to various properties of general relativity, the expanding universe, and the physics of Big Bang cosmology. Cosmological horizons set the size and scale of the observable universe. This article explains a number of these horizons. Particle horizon The particle horizon (also called the cosmological horizon, the comoving horizon, or the cosmic light horizon) is the maximum distance from which light from particles could have traveled to the observer in the age of the universe. It represents the boundary between the observable and the unobservable regions of the universe, so its distance at the present epoch defines the size of the observable universe. Due to the expansion of the universe, it is not simply the age of the universe times the speed of light, as in the Hubble horizon, but rather the speed of light multiplied by the conformal time. The ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]