HOME
*





Apeirogonal Antiprism
In geometry, an apeirogonal antiprism or infinite antiprismConway (2008), p. 263 is the arithmetic limit of the family of antiprisms; it can be considered an infinite polyhedron or a tiling of the plane. If the sides are equilateral triangles, it is a uniform tiling. In general, it can have two sets of alternating congruent isosceles triangles, surrounded by two half-planes. Related tilings and polyhedra The apeirogonal antiprism is the arithmetic limit of the family of antiprisms sr or ''p''.3.3.3, as ''p'' tends to infinity, thereby turning the antiprism into a Euclidean tiling. File:Infinite prism.svg, The apeirogonal antiprism can be constructed by applying an alternation operation to an apeirogonal prism. File:Apeirogonal trapezohedron.svg, The dual tiling of an apeirogonal antiprism is an ''apeirogonal deltohedron''. Similarly to the uniform polyhedra and the uniform tilings, eight uniform tilings may be based from the regular apeirogonal tiling. The rectified and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rectification (geometry)
In Euclidean geometry, rectification, also known as critical truncation or complete-truncation, is the process of truncating a polytope by marking the midpoints of all its Edge (geometry), edges, and cutting off its Vertex (geometry), vertices at those points. The resulting polytope will be bounded by vertex figure facets and the rectified facets of the original polytope. A rectification operator is sometimes denoted by the letter with a Schläfli symbol. For example, is the rectified cube, also called a cuboctahedron, and also represented as \begin 4 \\ 3 \end. And a rectified cuboctahedron is a rhombicuboctahedron, and also represented as r\begin 4 \\ 3 \end. Conway polyhedron notation uses for ambo as this operator. In graph theory this operation creates a medial graph. The rectification of any regular self-dual polyhedron or tiling will result in another regular polyhedron or tiling with a tiling order of 4, for example the tetrahedron becoming an octahedron As a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euclidean Tilings
Euclidean (or, less commonly, Euclidian) is an adjective derived from the name of Euclid, an ancient Greek mathematician. It is the name of: Geometry *Euclidean space, the two-dimensional plane and three-dimensional space of Euclidean geometry as well as their higher dimensional generalizations *Euclidean geometry, the study of the properties of Euclidean spaces *Non-Euclidean geometry, systems of points, lines, and planes analogous to Euclidean geometry but without uniquely determined parallel lines *Euclidean distance, the distance between pairs of points in Euclidean spaces *Euclidean ball, the set of points within some fixed distance from a center point Number theory *Euclidean division, the division which produces a quotient and a remainder *Euclidean algorithm, a method for finding greatest common divisors *Extended Euclidean algorithm, a method for solving the Diophantine equation ''ax'' + ''by'' = ''d'' where ''d'' is the greatest common divisor of ''a'' and ''b'' *Euc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Apeirogonal Tilings
In geometry, an apeirogonal tiling is a tessellation of the Euclidean plane, hyperbolic plane, or some other two-dimensional space by apeirogons. Tilings of this type include: *Order-2 apeirogonal tiling, Euclidean tiling of two half-spaces *Order-3 apeirogonal tiling, hyperbolic tiling with 3 apeirogons around a vertex *Order-4 apeirogonal tiling, hyperbolic tiling with 4 apeirogons around a vertex *Order-5 apeirogonal tiling, hyperbolic tiling with 5 apeirogons around a vertex *Infinite-order apeirogonal tiling, hyperbolic tiling with an infinite number of apeirogons around a vertex See also *Apeirogonal antiprism *Apeirogonal prism *Apeirohedron In geometry, a skew apeirohedron is an infinite skew polyhedron consisting of nonplanar Face (geometry), faces or nonplanar vertex figures, allowing the figure to extend indefinitely without folding round to form a Surface (topology)#Closed_surfac ... {{set index article, mathematics Apeirogonal tilings ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thorold Gosset
John Herbert de Paz Thorold Gosset (16 October 1869 – December 1962) was an English lawyer and an amateur mathematician. In mathematics, he is noted for discovering and classifying the semiregular polytopes in dimensions four and higher, and for his generalization of Descartes' theorem on tangent circles to four and higher dimensions. Biography Thorold Gosset was born in Thames Ditton, the son of John Jackson Gosset, a civil servant and statistical officer for HM Customs,UK Census 1871, RG10-863-89-23 and his wife Eleanor Gosset (formerly Thorold). He was admitted to Pembroke College, Cambridge as a pensioner on 1 October 1888, graduated BA in 1891, was called to the bar of the Inner Temple in June 1895, and graduated LLM in 1896. In 1900 he married Emily Florence Wood, and they subsequently had two children, named Kathleen and John.UK Census 1911, RG14-181-9123-19 Mathematics According to H. S. M. Coxeter, after obtaining his law degree in 1896 and having no clients, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Apeirogonal Hosohedron
In geometry, an apeirogonal hosohedron or infinite hosohedronConway (2008), p. 263 is a tiling of the plane consisting of two vertices at infinity. It may be considered an improper regular tiling of the Euclidean plane, with Schläfli symbol Related tilings and polyhedra The apeirogonal hosohedron is the arithmetic limit of the family of hosohedra , as ''p'' tends to infinity, thereby turning the hosohedron into a Euclidean tiling. All the vertices have then receded to infinity and the digonal faces are no longer defined by closed circuits of finite edges. Similarly to the uniform polyhedra and the uniform tilings, eight uniform tilings may be based from the regular apeirogonal tiling. The rectified and cantellated forms are duplicated, and as two times infinity is also infinity, the truncated and omnitruncated forms are also duplicated, therefore reducing the number of unique forms to four: the apeirogonal tiling, the apeirogonal hosohedron, the apeirogonal prism, and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order-2 Apeirogonal Tiling
In geometry, an order-2 apeirogonal tiling, apeirogonal dihedron, or infinite dihedronConway (2008), p. 263 is a tiling of the plane consisting of two apeirogons. It may be considered an improper regular tiling of the Euclidean plane, with Schläfli symbol Two apeirogons, joined along all their edges, can completely fill the entire plane as an apeirogon is infinite in size and has an interior angle of 180°, which is half of a full 360°. Related tilings and polyhedra The apeirogonal tiling is the arithmetic limit of the family of dihedra , as ''p'' tends to infinity, thereby turning the dihedron into a Euclidean tiling. Similarly to the uniform polyhedra and the uniform tilings, eight uniform tilings may be based from the regular apeirogonal tiling. The rectified and cantellated forms are duplicated, and as two times infinity is also infinity, the truncated and omnitruncated forms are also duplicated, therefore reducing the number of unique forms to four: the apeirogonal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Omnitruncation
In geometry, an omnitruncation is an operation applied to a regular polytope (or honeycomb) in a Wythoff construction that creates a maximum number of facets. It is represented in a Coxeter–Dynkin diagram with all nodes ringed. It is a ''shortcut'' term which has a different meaning in progressively-higher-dimensional polytopes: * Uniform polytope truncation operators ** For regular polygons: An ordinary truncation, t_\ = t\ = \. *** Coxeter-Dynkin diagram ** For uniform polyhedra (3-polytopes): A cantitruncation, t_\ = tr\. (Application of both cantellation and truncation operations) *** Coxeter-Dynkin diagram: ** For uniform polychora: A runcicantitruncation, t_\. (Application of runcination, cantellation, and truncation operations) *** Coxeter-Dynkin diagram: , , ** For uniform polytera (5-polytopes): A steriruncicantitruncation, t0,1,2,3,4. t_\. (Application of sterication, runcination, cantellation, and truncation operations) *** Coxeter-Dynkin diagram: , , ** ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Truncation (geometry)
In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new Facet (geometry), facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids. Uniform truncation In general any polyhedron (or polytope) can also be truncated with a degree of freedom as to how deep the cut is, as shown in Conway polyhedron notation truncation operation. A special kind of truncation, usually implied, is a uniform truncation, a truncation operator applied to a regular polyhedron (or regular polytope) which creates a resulting uniform polyhedron (uniform polytope) with equal edge lengths. There are no degrees of freedom, and it represents a fixed geometric, just like the regular polyhedra. In general all single ringed uniform polytopes have a uniform truncation. For example, the icosidodecahedron, represented as Schläfli symbols r or \begin 5 \\ 3 \end, and Coxeter-Dynkin diagram or has a uniform truncation, the truncate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cantellation (geometry)
In geometry, a cantellation is a 2nd-order Truncation (geometry), truncation in any dimension that Bevel, bevels a regular polytope at its Edge (geometry), edges and at its Vertex (geometry), vertices, creating a new Facet (geometry), facet in place of each edge and of each vertex. Cantellation also applies to regular tilings and honeycomb (geometry), honeycombs. Cantellating a polyhedron is also rectifying its rectification (geometry), rectification. Cantellation (for polyhedra and tilings) is also called ''Expansion (geometry), expansion'' by Alicia Boole Stott: it corresponds to moving the faces of the regular form away from the center, and filling in a new face in the gap for each opened edge and for each opened vertex. Notation A cantellated polytope is represented by an extended Schläfli symbol ''t''0,2 or ''r''\beginp\\q\\...\end or ''rr''. For Polyhedron, polyhedra, a cantellation offers a direct sequence from a regular polyhedron to its Dual polyhedron, dual. Examp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Apeirogonal Tiling
In geometry, an apeirogonal tiling is a tessellation of the Euclidean plane, hyperbolic plane, or some other two-dimensional space by apeirogons. Tilings of this type include: *Order-2 apeirogonal tiling, Euclidean tiling of two half-spaces *Order-3 apeirogonal tiling, hyperbolic tiling with 3 apeirogons around a vertex *Order-4 apeirogonal tiling, hyperbolic tiling with 4 apeirogons around a vertex *Order-5 apeirogonal tiling, hyperbolic tiling with 5 apeirogons around a vertex *Infinite-order apeirogonal tiling, hyperbolic tiling with an infinite number of apeirogons around a vertex See also *Apeirogonal antiprism *Apeirogonal prism *Apeirohedron In geometry, a skew apeirohedron is an infinite skew polyhedron consisting of nonplanar Face (geometry), faces or nonplanar vertex figures, allowing the figure to extend indefinitely without folding round to form a Surface (topology)#Closed_surfac ... {{set index article, mathematics Apeirogonal tilings ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Antiprism
In geometry, an antiprism or is a polyhedron composed of two parallel direct copies (not mirror images) of an polygon, connected by an alternating band of triangles. They are represented by the Conway notation . Antiprisms are a subclass of prismatoids, and are a (degenerate) type of snub polyhedron. Antiprisms are similar to prisms, except that the bases are twisted relatively to each other, and that the side faces (connecting the bases) are triangles, rather than quadrilaterals. The dual polyhedron of an -gonal antiprism is an -gonal trapezohedron. History At the intersection of modern-day graph theory and coding theory, the triangulation of a set of points have interested mathematicians since Isaac Newton, who fruitlessly sought a mathematical proof of the kissing number problem in 1694. The existence of antiprisms was discussed, and their name was coined by Johannes Kepler, though it is possible that they were previously known to Archimedes, as they satisfy the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]