Anderson Acceleration
   HOME
*





Anderson Acceleration
In mathematics, Anderson acceleration, also called Anderson mixing, is a method for the acceleration of the convergence rate of fixed-point iterations. Introduced by Donald G. Anderson, this technique can be used to find the solution to fixed point equations f(x) = x often arising in the field of computational science. Definition Given a function f:\mathbb^n \to \mathbb^n, consider the problem of finding a fixed point of f, which is a solution to the equation f(x) = x. A classical approach to the problem is to employ a fixed-point iteration scheme; that is, given an initial guess x_0 for the solution, to compute the sequence x_ = f(x_i) until some convergence criterion is met. However, the convergence of such a scheme is not guaranteed in general; moreover, the rate of convergence is usually linear, which can become too slow if the evaluation of the function f is computationally expensive. Anderson acceleration is a method to accelerate the convergence of the fixed-point sequen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fixed-point Iteration
In numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function f defined on the real numbers with real values and given a point x_0 in the domain of f, the fixed-point iteration is :x_=f(x_n), \, n=0, 1, 2, \dots which gives rise to the sequence x_0, x_1, x_2, \dots of iterated function applications x_0, f(x_0), f(f(x_0)), \dots which is hoped to converge to a point x_. If f is continuous, then one can prove that the obtained x_ is a fixed point of f, i.e., :f(x_)=x_ . More generally, the function f can be defined on any metric space with values in that same space. Examples * A first simple and useful example is the Babylonian method for computing the square root of ''a''>0, which consists in taking f(x)=\frac 12\left(\frac ax + x\right), i.e. the mean value of ''x'' and ''a/x'', to approach the limit x = \sqrt a (from whatever starting point x_0 \gg 0 ). This is a special case of Newton's method quote ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Newton's Method
In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function. The most basic version starts with a single-variable function defined for a real variable , the function's derivative , and an initial guess for a root of . If the function satisfies sufficient assumptions and the initial guess is close, then :x_ = x_0 - \frac is a better approximation of the root than . Geometrically, is the intersection of the -axis and the tangent of the graph of at : that is, the improved guess is the unique root of the linear approximation at the initial point. The process is repeated as :x_ = x_n - \frac until a sufficiently precise value is reached. This algorithm is first in the class of Householder's methods, succeeded by Halley's method. The method can also be extended to complex fun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulating living cells in medicine a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Root-finding Algorithms
In mathematics and computing, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function , from the real numbers to real numbers or from the complex numbers to the complex numbers, is a number such that . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros, expressed either as floating-point numbers or as small isolating interval (mathematics), intervals, or disk (mathematics), disks for complex roots (an interval or disk output being equivalent to an approximate output together with an error bound). Equation solving, Solving an equation is the same as finding the roots of the function . Thus root-finding algorithms allow solving any equation (mathematics), equation defined by continuous functions. However, most root-finding algorithms do not guarantee that they will find all the roots; in particular, if such an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fixed-point Iteration
In numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function f defined on the real numbers with real values and given a point x_0 in the domain of f, the fixed-point iteration is :x_=f(x_n), \, n=0, 1, 2, \dots which gives rise to the sequence x_0, x_1, x_2, \dots of iterated function applications x_0, f(x_0), f(f(x_0)), \dots which is hoped to converge to a point x_. If f is continuous, then one can prove that the obtained x_ is a fixed point of f, i.e., :f(x_)=x_ . More generally, the function f can be defined on any metric space with values in that same space. Examples * A first simple and useful example is the Babylonian method for computing the square root of ''a''>0, which consists in taking f(x)=\frac 12\left(\frac ax + x\right), i.e. the mean value of ''x'' and ''a/x'', to approach the limit x = \sqrt a (from whatever starting point x_0 \gg 0 ). This is a special case of Newton's method quote ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MATLAB
MATLAB (an abbreviation of "MATrix LABoratory") is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages. Although MATLAB is intended primarily for numeric computing, an optional toolbox uses the MuPAD symbolic engine allowing access to symbolic computing abilities. An additional package, Simulink, adds graphical multi-domain simulation and model-based design for dynamic and embedded systems. As of 2020, MATLAB has more than 4 million users worldwide. They come from various backgrounds of engineering, science, and economics. History Origins MATLAB was invented by mathematician and computer programmer Cleve Moler. The idea for MATLAB was based on his 1960s PhD thesis. Moler became a math professor at the University of New Mexico and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




GMRES
In mathematics, the generalized minimal residual method (GMRES) is an iterative method for the numerical solution of an indefinite nonsymmetric system of linear equations. The method approximates the solution by the vector in a Krylov subspace with minimal residual. The Arnoldi iteration is used to find this vector. The GMRES method was developed by Yousef Saad and Martin H. Schultz in 1986. It is a generalization and improvement of the MINRES method due to Paige and Saunders in 1975. The MINRES method requires that the matrix is symmetric, but has the advantage that it only requires handling of three vectors. GMRES is a special case of the DIIS method developed by Peter Pulay in 1980. DIIS is applicable to non-linear systems. The method Denote the Euclidean norm of any vector v by \, v\, . Denote the (square) system of linear equations to be solved by : Ax = b. \, The matrix ''A'' is assumed to be invertible of size ''m''-by-''m''. Furthermore, it is assumed that b is n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Broyden's Method
In numerical analysis, Broyden's method is a quasi-Newton method for finding roots in variables. It was originally described by C. G. Broyden in 1965. Newton's method for solving uses the Jacobian matrix, , at every iteration. However, computing this Jacobian is a difficult and expensive operation. The idea behind Broyden's method is to compute the whole Jacobian only at the first iteration and to do rank-one updates at other iterations. In 1979 Gay proved that when Broyden's method is applied to a linear system of size , it terminates in steps, although like all quasi-Newton methods, it may not converge for nonlinear systems. Description of the method Solving single-variable equation In the secant method, we replace the first derivative at with the finite-difference approximation: :f'(x_n) \simeq \frac, and proceed similar to Newton's method: :x_ = x_n - \frac where is the iteration index. Solving a system of nonlinear equations Consider a system of non ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Secant Method
In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function ''f''. The secant method can be thought of as a finite-difference approximation of Newton's method. However, the secant method predates Newton's method by over 3000 years. The method For finding a zero of a function , the secant method is defined by the recurrence relation. : x_n = x_ - f(x_) \frac = \frac. As can be seen from this formula, two initial values and are required. Ideally, they should be chosen close to the desired zero. Derivation of the method Starting with initial values and , we construct a line through the points and , as shown in the picture above. In slope–intercept form, the equation of this line is :y = \frac(x - x_1) + f(x_1). The root of this linear function, that is the value of such that is :x = x_1 - f(x_1) \frac. We then use this new value of as and repeat the process, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-Newton Method
Quasi-Newton methods are methods used to either find zeroes or local maxima and minima of functions, as an alternative to Newton's method. They can be used if the Jacobian or Hessian is unavailable or is too expensive to compute at every iteration. The "full" Newton's method requires the Jacobian in order to search for zeros, or the Hessian for finding extrema. Search for zeros: root finding Newton's method to find zeroes of a function g of multiple variables is given by x_ = x_n - _g(x_n) g(x_n), where _g(x_n) is the left inverse of the Jacobian matrix J_g(x_n) of g evaluated for x_n. Strictly speaking, any method that replaces the exact Jacobian J_g(x_n) with an approximation is a quasi-Newton method. For instance, the chord method (where J_g(x_n) is replaced by J_g(x_0) for all iterations) is a simple example. The methods given below for optimization refer to an important subclass of quasi-Newton methods, secant methods. Using methods developed to find extrema in order to fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Difference
A finite difference is a mathematical expression of the form . If a finite difference is divided by , one gets a difference quotient. The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems. The difference operator, commonly denoted \Delta is the operator that maps a function to the function \Delta /math> defined by :\Delta x)= f(x+1)-f(x). A difference equation is a functional equation that involves the finite difference operator in the same way as a differential equation involves derivatives. There are many similarities between difference equations and differential equations, specially in the solving methods. Certain recurrence relations can be written as difference equations by replacing iteration notation with finite differences. In numerical analysis, finite differences are widely used for approximating derivatives, and the term " ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Choice Of M
A choice is the range of different things from which a being can choose. The arrival at a choice may incorporate motivators and models. For example, a traveler might choose a route for a journey based on the preference of arriving at a given destination at a specified time. The preferred (and therefore chosen) route can then account for information such as the length of each of the possible routes, the amount of fuel in the vehicle, traffic conditions, etc. Simple choices might include what to eat for dinner or what to wear on a Saturday morning – choices that have relatively low-impact on the chooser's life overall. More complex choices might involve (for example) what candidate to vote for in an election, what profession to pursue, a life partner, etc. – choices based on multiple influences and having larger ramifications. Freedom of choice is generally cherished, whereas a severely limited or artificially restricted choice can lead to discomfort with choosing, and po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]