HOME





Ancestral Relation
In mathematical logic, the ancestral relation (often shortened to ancestral) of a binary relation ''R'' is its transitive closure, however defined in a different way, see below. Ancestral relations make their first appearance in Frege's ''Begriffsschrift''. Frege later employed them in his ''Grundgesetze'' as part of his definition of the finite cardinals. Hence the ancestral was a key part of his search for a logicist foundation of arithmetic. Definition The numbered propositions below are taken from his ''Begriffsschrift'' and recast in contemporary notation. A property ''P'' is called ''R''-hereditary if, whenever ''x'' is ''P'' and ''xRy'' holds, then ''y'' is also ''P'': :(Px \land xRy) \rightarrow Py An individual ''b'' is said to be an ''R''-ancestor of ''a'', written ''aR*b'', if ''b'' has every ''R''-hereditary property that all objects ''x'' such that ''aRx'' have: :\mathbf\ \vdash aR^*b \leftrightarrow \forall F forall x (aRx \to Fx) \land \forall x \forall y ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all humans are mortal", in first-order logic one can have expressions in the form "for all ''x'', if ''x'' is a human, then ''x'' is mortal", where "for all ''x"'' is a quantifier, ''x'' is a variable, and "... ''is a human''" and "... ''is mortal''" are predicates. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic, such as set theory, a theory for groups,A. Tarski, ''Undecidable Theories'' (1953), p. 77. Studies in Logic and the Foundation of Mathematics, North-Holland or a formal theory o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Edward N
Edward is an English male name. It is derived from the Anglo-Saxon name ''Ēadweard'', composed of the elements '' ēad'' "wealth, fortunate; prosperous" and '' weard'' "guardian, protector”. History The name Edward was very popular in Anglo-Saxon England, but the rule of the Norman and Plantagenet dynasties had effectively ended its use amongst the upper classes. The popularity of the name was revived when Henry III named his firstborn son, the future Edward I, as part of his efforts to promote a cult around Edward the Confessor, for whom Henry had a deep admiration. Variant forms The name has been adopted in the Iberian peninsula since the 15th century, due to Edward, King of Portugal, whose mother was English. The Spanish/Portuguese forms of the name are Eduardo and Duarte. Other variant forms include French Édouard, Italian Edoardo and Odoardo, German, Dutch, Czech and Romanian Eduard and Scandinavian Edvard. Short forms include Ed, Eddy, Eddie, Ted, Teddy a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stanford Encyclopedia Of Philosophy
The ''Stanford Encyclopedia of Philosophy'' (''SEP'') is a freely available online philosophy resource published and maintained by Stanford University, encompassing both an online encyclopedia of philosophy and peer-reviewed original publication. Each entry is written and maintained by an expert in the field, including professors from many academic institutions worldwide. Authors contributing to the encyclopedia give Stanford University the permission to publish the articles, but retain the copyright to those articles. Approach and history As of August 5, 2022, the ''SEP'' has 1,774 published entries. Apart from its online status, the encyclopedia uses the traditional academic approach of most encyclopedias and academic journals to achieve quality by means of specialist authors selected by an editor or an editorial committee that is competent (although not necessarily considered specialists) in the field covered by the encyclopedia and peer review. The encyclopedia was created i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Willard Van Orman Quine
Willard Van Orman Quine ( ; known to his friends as "Van"; June 25, 1908 – December 25, 2000) was an American philosopher and logician in the analytic tradition, recognized as "one of the most influential philosophers of the twentieth century". He was the Edgar Pierce Chair of Philosophy at Harvard University from 1956 to 1978. Quine was a teacher of logic and set theory. He was famous for his position that first-order logic is the only kind worthy of the name, and developed his own system of mathematics and set theory, known as New Foundations. In the philosophy of mathematics, he and his Harvard colleague Hilary Putnam developed the Quine–Putnam indispensability argument, an argument for the Philosophy of mathematics#Empiricism, reality of mathematical entities.Colyvan, Mark"Indispensability Arguments in the Philosophy of Mathematics" The Stanford Encyclopedia of Philosophy (Fall 2004 Edition), Edward N. Zalta (ed.). He was the main proponent of the view that philosophy is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ivor Grattan-Guinness
Ivor Owen Grattan-Guinness (23 June 1941 – 12 December 2014) was a historian of mathematics and logic. Life Grattan-Guinness was born in Bakewell, England; his father was a mathematics teacher and educational administrator. He gained his bachelor degree as a Mathematics Scholar at Wadham College, Oxford, and an MSc (Econ) in Mathematical Logic and the Philosophy of Science at the London School of Economics in 1966. He gained both the doctorate (PhD) in 1969, and higher doctorate ( D.Sc.) in 1978, in the History of Science at the University of London. He was Emeritus Professor of the History of Mathematics and Logic at Middlesex University, and a Visiting Research Associate at the London School of Economics. He was awarded the Kenneth O. May Medal for services to the History of Mathematics by the International Commission on the History of Mathematics (ICHM) on 31 July 2009, at Budapest, on the occasion of the 23rd International Congress for the History of Science.
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


George Boolos
George Stephen Boolos (; September 4, 1940 – May 27, 1996) was an American philosopher and a mathematical logician who taught at the Massachusetts Institute of Technology. Life Boolos was of Greek-Jewish descent. He graduated with an A.B. in mathematics from Princeton University after completing a senior thesis, titled "A simple proof of Gödel's first incompleteness theorem", under the supervision of Raymond Smullyan. Oxford University awarded him the B.Phil. in 1963. In 1966, he obtained the first PhD in philosophy ever awarded by the Massachusetts Institute of Technology, under the direction of Hilary Putnam. After teaching three years at Columbia University, he returned to MIT in 1969, where he spent the rest of his career. A charismatic speaker well known for his clarity and wit, he once delivered a lecture (1994b) giving an account of Gödel's second incompleteness theorem, employing only words of one syllable. At the end of his viva, Hilary Putnam asked him, "A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reflexive Transitive Closure
In mathematics, a subset of a given set is closed under an operation on the larger set if performing that operation on members of the subset always produces a member of that subset. For example, the natural numbers are closed under addition, but not under subtraction: is not a natural number, although both 1 and 2 are. Similarly, a subset is said to be closed under a ''collection'' of operations if it is closed under each of the operations individually. The closure of a subset is the result of a closure operator applied to the subset. The ''closure'' of a subset under some operations is the smallest superset that is closed under these operations. It is often called the ''span'' (for example linear span) or the ''generated set''. Definitions Let be a set equipped with one or several methods for producing elements of from other elements of . Operations and (partial) multivariate function are examples of such methods. If is a topological space, the limit of a sequence of eleme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transitive Closure
In mathematics, the transitive closure of a homogeneous binary relation on a set (mathematics), set is the smallest Relation (mathematics), relation on that contains and is Transitive relation, transitive. For finite sets, "smallest" can be taken in its usual sense, of having the fewest related pairs; for infinite sets is the unique minimal element, minimal transitive superset of . For example, if is a set of airports and means "there is a direct flight from airport to airport " (for and in ), then the transitive closure of on is the relation such that means "it is possible to fly from to in one or more flights". More formally, the transitive closure of a binary relation on a set is the smallest (w.r.t. ⊆) transitive relation on such that ⊆ ; see . We have = if, and only if, itself is transitive. Conversely, transitive reduction adduces a minimal relation from a given relation such that they have the same closure, that is, ; however, many differen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gottlob Frege
Friedrich Ludwig Gottlob Frege (; ; 8 November 1848 – 26 July 1925) was a German philosopher, logician, and mathematician. He was a mathematics professor at the University of Jena, and is understood by many to be the father of analytic philosophy, concentrating on the philosophy of language, philosophy of logic, logic, and Philosophy of mathematics, mathematics. Though he was largely ignored during his lifetime, Giuseppe Peano (1858–1932), Bertrand Russell (1872–1970), and, to some extent, Ludwig Wittgenstein (1889–1951) introduced his work to later generations of philosophers. Frege is widely considered to be the greatest logician since Aristotle, and one of the most profound philosophers of mathematics ever. His contributions include the History of logic#Rise of modern logic, development of modern logic in the ''Begriffsschrift'' and work in the foundations of mathematics. His book the ''Foundations of Arithmetic'' is the seminal text of the logicist project, and is ci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Begriffsschrift
''Begriffsschrift'' (German for, roughly, "concept-writing") is a book on logic by Gottlob Frege, published in 1879, and the formal system set out in that book. ''Begriffsschrift'' is usually translated as ''concept writing'' or ''concept notation''; the full title of the book identifies it as "a formula language, modeled on that of arithmetic, for pure thought." Frege's motivation for developing his formal approach to logic resembled Leibniz's motivation for his ''calculus ratiocinator'' (despite that, in the foreword Frege clearly denies that he achieved this aim, and also that his main aim would be constructing an ideal language like Leibniz's, which Frege declares to be a quite hard and idealistic—though not impossible—task). Frege went on to employ his logical calculus in his research on the foundations of mathematics, carried out over the next quarter-century. This is the first work in Analytical Philosophy, a field that later British and Anglo philosophers such as Bertr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Second-order Logic
In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, quantifies over relations. For example, the second-order sentence \forall P\,\forall x (Px \lor \neg Px) says that for every formula ''P'', and every individual ''x'', either ''Px'' is true or not(''Px'') is true (this is the law of excluded middle). Second-order logic also includes quantification over sets, functions, and other variables (see section below). Both first-order and second-order logic use the idea of a domain of discourse (often called simply the "domain" or the "universe"). The domain is a set over which individual elements may be quantified. Examples First-order logic can quantify over individuals, but no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]