Analyticity Of Holomorphic Functions
In complex analysis, a complex-valued function f of a complex variable z: *is said to be holomorphic at a point a if it is differentiable at every point within some open disk centered at a, and * is said to be analytic at a if in some open disk centered at a it can be expanded as a convergent power series f(z)=\sum_^\infty c_n(z-a)^n (this implies that the radius of convergence is positive). One of the most important theorems of complex analysis is that holomorphic functions are analytic and vice versa. Among the corollaries of this theorem are * the identity theorem that two holomorphic functions that agree at every point of an infinite set S with an accumulation point inside the intersection of their domains also agree everywhere in every connected open subset of their domains that contains the set S, and * the fact that, since power series are infinitely differentiable, so are holomorphic functions (this is in contrast to the case of real differentiable functions), and * t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear engineering, nuclear, aerospace engineering, aerospace, mechanical engineering, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to its Taylor series (that is, it is Analyticity of holomorphic functions, analytic), complex analysis is particularly concerned with analytic functions of a complex variable (that is, holomorphic functions). History Complex analysis is one of the classical ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Singularity
In mathematics, a singularity is a point at which a given mathematical object is not defined, or a point where the mathematical object ceases to be well-behaved in some particular way, such as by lacking differentiability or analyticity. For example, the real function : f(x) = \frac has a singularity at x = 0, where the numerical value of the function approaches \pm\infty so the function is not defined. The absolute value function g(x) = , x, also has a singularity at x = 0, since it is not differentiable there. The algebraic curve defined by \left\ in the (x, y) coordinate system has a singularity (called a cusp) at (0, 0). For singularities in algebraic geometry, see singular point of an algebraic variety. For singularities in differential geometry, see singularity theory. Real analysis In real analysis, singularities are either discontinuities, or discontinuities of the derivative (sometimes also discontinuities of higher order derivatives). There are four kinds of discon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Analytic Functions
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if its Taylor series about ''x''0 converges to the function in some neighborhood for every ''x''0 in its domain. Definitions Formally, a function f is ''real analytic'' on an open set D in the real line if for any x_0\in D one can write : f(x) = \sum_^\infty a_ \left( x-x_0 \right)^ = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + a_3 (x-x_0)^3 + \cdots in which the coefficients a_0, a_1, \dots are real numbers and the series is convergent to f(x) for x in a neighborhood of x_0. Alternatively, a real analytic function is an infinitely differentiable function such that the Taylor series at any point x_0 in its domai ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Taylor Series
In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is also called a Maclaurin series, when 0 is the point where the derivatives are considered, after Colin Maclaurin, who made extensive use of this special case of Taylor series in the mid-18th century. The partial sum formed by the first terms of a Taylor series is a polynomial of degree that is called the th Taylor polynomial of the function. Taylor polynomials are approximations of a function, which become generally better as increases. Taylor's theorem gives quantitative estimates on the error introduced by the use of such approximations. If the Taylor series of a function is convergent, its sum is the limit of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weierstrass M-test
In mathematics, the Weierstrass M-test is a test for determining whether an infinite series of functions converges uniformly and absolutely. It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex numbers. It is named after the German mathematician Karl Weierstrass (1815-1897). Statement Weierstrass M-test. Suppose that (''f''''n'') is a sequence of real- or complex-valued functions defined on a set ''A'', and that there is a sequence of non-negative numbers (''M''''n'') satisfying the conditions * , f_n(x), \leq M_n for all n \geq 1 and all x \in A, and * \sum_^ M_n converges. Then the series :\sum_^ f_n (x) converges absolutely and uniformly on ''A''. The result is often used in combination with the uniform limit theorem. Together they say that if, in addition to the above conditions, the set ''A'' is a topological space and the functions ''f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cauchy's Integral Formula
In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result that does not hold in real analysis. Theorem Let be an open subset of the complex plane , and suppose the closed disk defined as :D = \bigl\ is completely contained in . Let be a holomorphic function, and let be the circle, oriented counterclockwise, forming the boundary of . Then for every in the interior of , :f(a) = \frac \oint_\gamma \frac\,dz.\, The proof of this statement uses the Cauchy integral theorem and like that theorem, it only requires t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partitions Of Unity
In mathematics, a partition of unity of a topological space is a set of continuous functions from to the unit interval ,1such that for every point x\in X: * there is a neighbourhood of where all but a finite number of the functions of are 0, and * the sum of all the function values at is 1, i.e., \sum_ \rho(x) = 1. Partitions of unity are useful because they often allow one to extend local constructions to the whole space. They are also important in the interpolation of data, in signal processing, and the theory of spline functions. Existence The existence of partitions of unity assumes two distinct forms: # Given any open cover \_ of a space, there exists a partition \_ indexed ''over the same set'' such that supp \rho_i \subseteq U_i. Such a partition is said to be subordinate to the open cover \_i. # If the space is locally-compact, given any open cover \_ of a space, there exists a partition \_ indexed over a possibly distinct index set such that each has comp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Connected Set
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is ''locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topologic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bump Function
In mathematics, a bump function (also called a test function) is a function f: \R^n \to \R on a Euclidean space \R^n which is both smooth (in the sense of having continuous derivatives of all orders) and compactly supported. The set of all bump functions with domain \R^n forms a vector space, denoted \mathrm^\infty_0(\R^n) or \mathrm^\infty_\mathrm(\R^n). The dual space of this space endowed with a suitable topology is the space of distributions. Examples The function \Psi:\R \to \R given by \Psi(x) = \begin \exp\left( -\frac\right), & x \in (-1,1) \\ 0, & \text \end is an example of a bump function in one dimension. It is clear from the construction that this function has compact support, since a function of the real line has compact support if and only if it has bounded closed support. The proof of smoothness follows along the same lines as for the related function discussed in the Non-analytic smooth function article. This function can be interpreted as the Gaussian fu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Entire Function
In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function has a root at , then , taking the limit value at , is an entire function. On the other hand, the natural logarithm, the reciprocal function, and the square root are all not entire functions, nor can they be continued analytically to an entire function. A transcendental entire function is an entire function that is not a polynomial. Properties Every entire function can be represented as a power series f(z) = \sum_^\infty a_n z^n that converges everywhere in the complex plane, hen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Accumulation Point
In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x with respect to the topology on X also contains a point of S other than x itself. A limit point of a set S does not itself have to be an element of S. There is also a closely related concept for sequences. A cluster point or accumulation point of a sequence (x_n)_ in a topological space X is a point x such that, for every neighbourhood V of x, there are infinitely many natural numbers n such that x_n \in V. This definition of a cluster or accumulation point of a sequence generalizes to nets and filters. The similarly named notion of a (respectively, a limit point of a filter, a limit point of a net) by definition refers to a point that the sequence converges to (respectively, the filter converges to, the net converges to). Importantly, although "limit point of a set" is synon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |