HOME
*





Analysis Of PRAM Algorithms
In computer science, the analysis of parallel algorithms is the process of finding the computational complexity of algorithms executed in parallel – the amount of time, storage, or other resources needed to execute them. In many respects, analysis of parallel algorithms is similar to the analysis of sequential algorithms, but is generally more involved because one must reason about the behavior of multiple cooperating threads of execution. One of the primary goals of parallel analysis is to understand how a parallel algorithm's use of resources (speed, space, etc.) changes as the number of processors is changed. Background A so-called work-time (WT) (sometimes called work-depth, or work-span) framework was originally introduced by Shiloach and Vishkin for conceptualizing and describing parallel algorithms. In the WT framework, a parallel algorithm is first described in terms of parallel rounds. For each round, the operations to be performed are characterized, but several issue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithms
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm can be expressed within a finite amount of space and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computational Complexity
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory. Both areas are highly related, as the complexity of an algorithm is always an upper bound on the complexity of the problem solved by this algorithm. Moreover, for designing efficient algorithms, it is often fundamental to compare the complexity of a specific algorithm to the complexity of the problem to be solved. Also, in most cases, the only thing that is known about the complexity of a problem is that it is lower than the c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Analysis Of Algorithms
In computer science, the analysis of algorithms is the process of finding the computational complexity of algorithms—the amount of time, storage, or other resources needed to execute them. Usually, this involves determining a function that relates the size of an algorithm's input to the number of steps it takes (its time complexity) or the number of storage locations it uses (its space complexity). An algorithm is said to be efficient when this function's values are small, or grow slowly compared to a growth in the size of the input. Different inputs of the same size may cause the algorithm to have different behavior, so best, worst and average case descriptions might all be of practical interest. When not otherwise specified, the function describing the performance of an algorithm is usually an upper bound, determined from the worst case inputs to the algorithm. The term "analysis of algorithms" was coined by Donald Knuth. Algorithm analysis is an important part of a broader ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parallel Random-access Machine
In computer science, a parallel random-access machine (parallel RAM or PRAM) is a shared-memory abstract machine. As its name indicates, the PRAM is intended as the parallel-computing analogy to the random-access machine (RAM) (not to be confused with random-access memory). In the same way that the RAM is used by sequential-algorithm designers to model algorithmic performance (such as time complexity), the PRAM is used by parallel-algorithm designers to model parallel algorithmic performance (such as time complexity, where the number of processors assumed is typically also stated). Similar to the way in which the RAM model neglects practical issues, such as access time to cache memory versus main memory, the PRAM model neglects such issues as synchronization and communication, but provides any (problem-size-dependent) number of processors. Algorithm cost, for instance, is estimated using two parameters O(time) and O(time × processor_number). Read/write conflicts Read/write conflic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Time Complexity
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is generally expresse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Data Dependency
A data dependency in computer science is a situation in which a program statement (instruction) refers to the data of a preceding statement. In compiler theory, the technique used to discover data dependencies among statements (or instructions) is called dependence analysis. There are three types of dependencies: data, name, and control. Data dependencies Assuming statement S_1 and S_2, S_2 depends on S_1 if: :\left (S_1) \cap O(S_2)\right\cup \left (S_1) \cap I(S_2)\right\cup \left (S_1) \cap O(S_2)\right\neq \varnothing where: * I(S_i) is the set of memory locations read by * O(S_j) is the set of memory locations written by and * there is a feasible run-time execution path from S_1 to This Condition is called Bernstein Condition, named by A. J. Bernstein. Three cases exist: * Anti-dependence: I(S_1) \cap O(S_2) \neq \varnothing, S_1 \rightarrow S_2 and S_1 reads something before S_2 overwrites it * Flow (data) dependence: O(S_1) \cap I(S_2) \neq \varnothing, S_1 \right ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Communications Of The ACM
''Communications of the ACM'' is the monthly journal of the Association for Computing Machinery (ACM). It was established in 1958, with Saul Rosen as its first managing editor. It is sent to all ACM members. Articles are intended for readers with backgrounds in all areas of computer science and information systems. The focus is on the practical implications of advances in information technology and associated management issues; ACM also publishes a variety of more theoretical journals. The magazine straddles the boundary of a science magazine, trade magazine, and a scientific journal. While the content is subject to peer review, the articles published are often summaries of research that may also be published elsewhere. Material published must be accessible and relevant to a broad readership. From 1960 onward, ''CACM'' also published algorithms, expressed in ALGOL. The collection of algorithms later became known as the Collected Algorithms of the ACM. See also * ''Journal of the A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Speedup
In computer architecture, speedup is a number that measures the relative performance of two systems processing the same problem. More technically, it is the improvement in speed of execution of a task executed on two similar architectures with different resources. The notion of speedup was established by Amdahl's law, which was particularly focused on parallel processing. However, speedup can be used more generally to show the effect on performance after any resource enhancement. Definitions Speedup can be defined for two different types of quantities: '' latency'' and ''throughput''. ''Latency'' of an architecture is the reciprocal of the execution speed of a task: : L = \frac = \frac, where * ''v'' is the execution speed of the task; * ''T'' is the execution time of the task; * ''W'' is the execution workload of the task. ''Throughput'' of an architecture is the execution rate of a task: : Q = \rho vA = \frac = \frac, where * ''ρ'' is the execution density (e.g., the number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Big O Notation
Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for ''Ordnung'', meaning the order of approximation. In computer science, big O notation is used to classify algorithms according to how their run time or space requirements grow as the input size grows. In analytic number theory, big O notation is often used to express a bound on the difference between an arithmetical function and a better understood approximation; a famous example of such a difference is the remainder term in the prime number theorem. Big O notation is also used in many other fields to provide similar estimates. Big O notation characterizes functions according to their growth rates: d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Memory Hierarchy
In computer architecture, the memory hierarchy separates computer storage into a hierarchy based on response time. Since response time, complexity, and capacity are related, the levels may also be distinguished by their performance and controlling technologies. Memory hierarchy affects performance in computer architectural design, algorithm predictions, and lower level programming constructs involving locality of reference. Designing for high performance requires considering the restrictions of the memory hierarchy, i.e. the size and capabilities of each component. Each of the various components can be viewed as part of a hierarchy of memories (m1, m2, ..., mn) in which each member mi is typically smaller and faster than the next highest member mi+1 of the hierarchy. To limit waiting by higher levels, a lower level will respond by filling a buffer and then signaling for activating the transfer. There are four major storage levels. * ''Internal'' – Processor registers and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scalability
Scalability is the property of a system to handle a growing amount of work by adding resources to the system. In an economic context, a scalable business model implies that a company can increase sales given increased resources. For example, a package delivery system is scalable because more packages can be delivered by adding more delivery vehicles. However, if all packages had to first pass through a single warehouse for sorting, the system would not be as scalable, because one warehouse can handle only a limited number of packages. In computing, scalability is a characteristic of computers, networks, algorithms, networking protocols, programs and applications. An example is a search engine, which must support increasing numbers of users, and the number of topics it indexes. Webscale is a computer architectural approach that brings the capabilities of large-scale cloud computing companies into enterprise data centers. In mathematics, scalability mostly refers to closure u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]