HOME
*





Alternant Matrix
In linear algebra, an alternant matrix is a matrix formed by applying a finite list of functions pointwise to a fixed column of inputs. An alternant determinant is the determinant of a square alternant matrix. Generally, if f_1, f_2, \dots, f_n are functions from a set X to a field F, and \in X, then the alternant matrix has size m \times n and is defined by :M=\begin f_1(\alpha_1) & f_2(\alpha_1) & \cdots & f_n(\alpha_1)\\ f_1(\alpha_2) & f_2(\alpha_2) & \cdots & f_n(\alpha_2)\\ f_1(\alpha_3) & f_2(\alpha_3) & \cdots & f_n(\alpha_3)\\ \vdots & \vdots & \ddots &\vdots \\ f_1(\alpha_m) & f_2(\alpha_m) & \cdots & f_n(\alpha_m)\\ \end or, more compactly, M_ = f_j(\alpha_i). (Some authors use the transpose of the above matrix.) Examples of alternant matrices include Vandermonde matrices, for which f_j(\alpha)=\alpha^, and Moore matrices, for which f_j(\alpha)=\alpha^. Properties * The alternant can be used to check the linear independence of the functions f_1, f_2, \dots, f_n in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions. Linear algebra is also used in most sciences and fields of engineering, because it allows modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order approximations, using the fact that the differential of a multivariate function at a point is the linear ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schur Polynomial
In mathematics, Schur polynomials, named after Issai Schur, are certain symmetric polynomials in ''n'' variables, indexed by partitions, that generalize the elementary symmetric polynomials and the complete homogeneous symmetric polynomials. In representation theory they are the characters of polynomial irreducible representations of the general linear groups. The Schur polynomials form a linear basis for the space of all symmetric polynomials. Any product of Schur polynomials can be written as a linear combination of Schur polynomials with non-negative integral coefficients; the values of these coefficients is given combinatorially by the Littlewood–Richardson rule. More generally, skew Schur polynomials are associated with pairs of partitions and have similar properties to Schur polynomials. Definition (Jacobi's bialternant formula) Schur polynomials are indexed by integer partitions. Given a partition , where , and each is a non-negative integer, the functions a_ (x_1, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dover Publications
Dover Publications, also known as Dover Books, is an American book publisher founded in 1941 by Hayward and Blanche Cirker. It primarily reissues books that are out of print from their original publishers. These are often, but not always, books in the public domain. The original published editions may be scarce or historically significant. Dover republishes these books, making them available at a significantly reduced cost. Classic reprints Dover reprints classic works of literature, classical sheet music, and public-domain images from the 18th and 19th centuries. Dover also publishes an extensive collection of mathematical, scientific, and engineering texts. It often targets its reprints at a niche market, such as woodworking. Starting in 2015, the company branched out into graphic novel reprints, overseen by Dover acquisitions editor and former comics writer and editor Drew Ford. Most Dover reprints are photo facsimiles of the originals, retaining the original pagination and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wronskian
In mathematics, the Wronskian (or Wrońskian) is a determinant introduced by and named by . It is used in the study of differential equations, where it can sometimes show linear independence in a set of solutions. Definition The Wronskian of two differentiable functions and is . More generally, for real- or complex-valued functions , which are times differentiable on an interval , the Wronskian as a function on is defined by W(f_1, \ldots, f_n) (x)= \begin f_1(x) & f_2(x) & \cdots & f_n(x) \\ f_1'(x) & f_2'(x) & \cdots & f_n' (x)\\ \vdots & \vdots & \ddots & \vdots \\ f_1^(x)& f_2^(x) & \cdots & f_n^(x) \end,\quad x\in I. That is, it is the determinant of the matrix constructed by placing the functions in the first row, the first derivative of each function in the second row, and so on through the th derivative, thus forming a square matrix. When the functions are solutions of a linear differential equation, the Wronskian can be found explicitly using Abel's ident ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




List Of Matrices
This article lists some important classes of matrices used in mathematics, science and engineering. A matrix (plural matrices, or less commonly matrixes) is a rectangular array of numbers called ''entries''. Matrices have a long history of both study and application, leading to diverse ways of classifying matrices. A first group is matrices satisfying concrete conditions of the entries, including constant matrices. Important examples include the identity matrix given by : I_n = \begin 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end. and the zero matrix of dimension m \times n. For example: : O_ = \begin 0 & 0 & 0 \\ 0 & 0 & 0 \end. Further ways of classifying matrices are according to their eigenvalues, or by imposing conditions on the product of the matrix with other matrices. Finally, many domains, both in mathematics and other sciences including physics and chemistry, have particular matrices that are applied chiefly in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alternant Code
In coding theory, alternant codes form a class of parameterised error-correcting codes which generalise the BCH codes. Definition An ''alternant code'' over GF(''q'') of length ''n'' is defined by a parity check matrix ''H'' of alternant form ''H''''i'',''j'' = αji''y''''i'', where the α''j'' are distinct elements of the extension GF(''q''''m''), the ''y''''i'' are further non-zero parameters again in the extension GF(''q''''m'') and the indices range as ''i'' from 0 to δ − 1, ''j'' from 1 to ''n''. Properties The parameters of this alternant code are length ''n'', dimension ≥ ''n'' − ''m''δ and minimum distance ≥ δ + 1. There exist long alternant codes which meet the Gilbert–Varshamov bound. The class of alternant codes includes * BCH code In coding theory, the Bose–Chaudhuri–Hocquenghem codes (BCH codes) form a class of cyclic error-correcting codes that are constructed using polynomials over a finite field ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coding Theory
Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and data storage. Codes are studied by various scientific disciplines—such as information theory, electrical engineering, mathematics, linguistics, and computer science—for the purpose of designing efficient and reliable data transmission methods. This typically involves the removal of redundancy and the correction or detection of errors in the transmitted data. There are four types of coding: # Data compression (or ''source coding'') # Error control (or ''channel coding'') # Cryptographic coding # Line coding Data compression attempts to remove unwanted redundancy from the data from a source in order to transmit it more efficiently. For example, ZIP data compression makes data files smaller, for purposes such as to reduce Internet traffic. Data compression a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nullspace
In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the linear subspace of the domain of the map which is mapped to the zero vector. That is, given a linear map between two vector spaces and , the kernel of is the vector space of all elements of such that , where denotes the zero vector in , or more symbolically: :\ker(L) = \left\ . Properties The kernel of is a linear subspace of the domain .Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in , , and Strang's lectures. In the linear map L : V \to W, two elements of have the same image in if and only if their difference lies in the kernel of , that is, L\left(\mathbf_1\right) = L\left(\mathbf_2\right) \quad \text \quad L\left(\mathbf_1-\mathbf_2\right) = \mathbf. From this, it follows that the image of is isomorphic to the quotient of by the ke ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, unle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Partial Fractions
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. The importance of the partial fraction decomposition lies in the fact that it provides algorithms for various computations with rational functions, including the explicit computation of antiderivatives, Taylor series expansions, inverse Z-transforms, and inverse Laplace transforms. The concept was discovered independently in 1702 by both Johann Bernoulli and Gottfried Leibniz. In symbols, the ''partial fraction decomposition'' of a rational fraction of the form \frac, where and are polynomials, is its expression as \frac=p(x) + \sum_j \frac where is a polynomial, and, for each , the denominator is a power of an irreducible polynomial ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Function Space
In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function ''space''. In linear algebra Let be a vector space over a field and let be any set. The functions → can be given the structure of a vector space over where the operations are defined pointwise, that is, for any , : → , any in , and any in , define \begin (f+g)(x) &= f(x)+g(x) \\ (c\cdot f)(x) &= c\cdot f(x) \end When the domain has additional structure, one might consider instead the subset (or subspace) of all such functions which respect that structure. For example, if is also a vector space over , the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]