Alpha Recursion Theory
In recursion theory, α recursion theory is a generalisation of recursion theory to subsets of admissible ordinals \alpha. An admissible set is closed under \Sigma_1(L_\alpha) functions, where L_\xi denotes a rank of Godel's constructible hierarchy. \alpha is an admissible ordinal if L_ is a model of Kripke–Platek set theory. In what follows \alpha is considered to be fixed. The objects of study in \alpha recursion are subsets of \alpha. These sets are said to have some properties: *A set A\subseteq\alpha is said to be \alpha-recursively-enumerable if it is \Sigma_1 definable over L_\alpha, possibly with parameters from L_\alpha in the definition. *A is \alpha-recursive if both A and \alpha \setminus A (its relative complement in \alpha) are \alpha-recursively-enumerable. It's of note that \alpha-recursive sets are members of L_ by definition of L. *Members of L_\alpha are called \alpha-finite and play a similar role to the finite numbers in classical recursion theory. *Members ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Recursion Theory
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory. Basic questions addressed by computability theory include: * What does it mean for a function on the natural numbers to be computable? * How can noncomputable functions be classified into a hierarchy based on their level of noncomputability? Although there is considerable overlap in terms of knowledge and methods, mathematical computability theorists study the theory of relative computability, reducibility notions, and degree structures; those in the computer science field focus on the theory of subrecursive hierarchies, formal methods, and formal languages. I ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Admissible Ordinal
In set theory, an ordinal number ''α'' is an admissible ordinal if L''α'' is an admissible set (that is, a transitive model of Kripke–Platek set theory); in other words, ''α'' is admissible when ''α'' is a limit ordinal and L''α'' ⊧ Σ0-collection.. See in particulap. 265. The term was coined by Richard Platek in 1966. The first two admissible ordinals are ω and \omega_1^ (the least non-recursive ordinal, also called the Church–Kleene ordinal). Any regular uncountable cardinal is an admissible ordinal. By a theorem of Sacks, the countable admissible ordinals are exactly those constructed in a manner similar to the Church–Kleene ordinal, but for Turing machines with oracles. One sometimes writes \omega_\alpha^ for the \alpha-th ordinal that is either admissible or a limit of admissibles; an ordinal that is both is called ''recursively inaccessible''. There exists a theory of large ordinals in this manner that is highly parallel to that of (small) large c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constructible Hierarchy
In mathematics, in set theory, the constructible universe (or Gödel's constructible universe), denoted by , is a particular class of sets that can be described entirely in terms of simpler sets. is the union of the constructible hierarchy . It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory (that is, of Zermelo–Fraenkel set theory with the axiom of choice excluded), and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result. What is can be thought of as being built in "stages" resembling the constru ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kripke–Platek Set Theory
The Kripke–Platek set theory (KP), pronounced , is an axiomatic set theory developed by Saul Kripke and Richard Platek. The theory can be thought of as roughly the predicative part of ZFC and is considerably weaker than it. Axioms In its formulation, a Δ0 formula is one all of whose quantifiers are bounded. This means any quantification is the form \forall u \in v or \exist u \in v. (See the Lévy hierarchy.) * Axiom of extensionality: Two sets are the same if and only if they have the same elements. * Axiom of induction: φ(''a'') being a formula, if for all sets ''x'' the assumption that φ(''y'') holds for all elements ''y'' of ''x'' entails that φ(''x'') holds, then φ(''x'') holds for all sets ''x''. * Axiom of empty set: There exists a set with no members, called the empty set and denoted . * Axiom of pairing: If ''x'', ''y'' are sets, then so is , a set containing ''x'' and ''y'' as its only elements. * Axiom of union: For any set ''x'', there is a set ''y'' such ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Relative Complement
In set theory, the complement of a set , often denoted by (or ), is the set of elements not in . When all sets in the universe, i.e. all sets under consideration, are considered to be members of a given set , the absolute complement of is the set of elements in that are not in . The relative complement of with respect to a set , also termed the set difference of and , written B \setminus A, is the set of elements in that are not in . Absolute complement Definition If is a set, then the absolute complement of (or simply the complement of ) is the set of elements not in (within a larger set that is implicitly defined). In other words, let be a set that contains all the elements under study; if there is no need to mention , either because it has been previously specified, or it is obvious and unique, then the absolute complement of is the relative complement of in : A^\complement = U \setminus A. Or formally: A^\complement = \. The absolute complement of is u ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Primitive Recursion
In computability theory, a primitive recursive function is roughly speaking a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop can be determined before entering the loop). Primitive recursive functions form a strict subset of those general recursive functions that are also total functions. The importance of primitive recursive functions lies in the fact that most computable functions that are studied in number theory (and more generally in mathematics) are primitive recursive. For example, addition and division, the factorial and exponential function, and the function which returns the ''n''th prime are all primitive recursive. In fact, for showing that a computable function is primitive recursive, it suffices to show that its time complexity is bounded above by a primitive recursive function of the input size. It is hence not that easy to devise a computable function that is ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Empty Set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called non-empty. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). The empty set may also be called the void set. Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø in the Danish and Norwegian alphabets. In the past, "0" was occasionally used as a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Levy Hierarchy
Levy, Lévy or Levies may refer to: People * Levy (surname), people with the surname Levy or Lévy * Levy Adcock (born 1988), American football player * Levy Barent Cohen (1747–1808), Dutch-born British financier and community worker * Levy Fidelix (1951–2021), Brazilian conservative politician, businessman and journalist * Levy Gerzberg (born 1945), Israeli-American entrepreneur, inventor, and business person * Levy Li (born 1987), Miss Malaysia Universe 2008–2009 * Levy Mashiane (born 1996), South African footballer * Levy Matebo Omari (born 1989), Kenyan long-distance runner * Levy Mayer (1858–1922), American lawyer * Levy Middlebrooks (born 1966), American basketball player * Levy Mokgothu, South African footballer * Levy Mwanawasa (1948–2008), President of Zambia from 2002 * Levy Nzoungou (born 1998), Congolese-French rugby player, playing in England * Levy Rozman (born 1995), American chess IM, coach, and content creator * Levy Sekgapane (born 1990), Sou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Second-order Arithmetic
In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation for much, but not all, of mathematics. A precursor to second-order arithmetic that involves third-order parameters was introduced by David Hilbert and Paul Bernays in their book ''Grundlagen der Mathematik''. The standard axiomatization of second-order arithmetic is denoted by Z2. Second-order arithmetic includes, but is significantly stronger than, its first-order counterpart Peano arithmetic. Unlike Peano arithmetic, second-order arithmetic allows quantification over sets of natural numbers as well as numbers themselves. Because real numbers can be represented as (infinite) sets of natural numbers in well-known ways, and because second-order arithmetic allows quantification over such sets, it is possible to formalize the real numbers in second-order arithmetic. For this reason, secon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |