ARP4761
ARP4761, Guidelines for Conducting the Safety Assessment Process on Civil Aircraft, Systems, and Equipment is an Aerospace Recommended Practice from SAE International. In conjunction with ARP4754, ARP4761 is used to demonstrate compliance with 14 CFR 25.1309 in the U.S. Federal Aviation Administration (FAA) airworthiness regulations for transport category aircraft, and also harmonized international airworthiness regulations such as European Aviation Safety Agency (EASA) CS–25.1309. This Recommended Practice defines a process for using common modeling techniques to assess the safety of a system being put together. The first 30 pages of the document covers that process. The next 140 pages give an overview of the modeling techniques and how they should be applied. The last 160 pages give an example of the process in action. Some of the methods covered: * Functional Hazard Assessment (FHA) *Preliminary System Safety Assessment (PSSA) *System Safety Assessment (SSA ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ARP4754
ARP4754(), Aerospace Recommended Practice (ARP) Guidelines for Development of Civil Aircraft and Systems, is a published standard from SAE International, dealing with the development processes which support certification of Aircraft systems, addressing "the complete aircraft development cycle, from systems requirements through systems verification." Since their joint release in 2002, compliance with the guidelines and methods described within ARP4754() and its companion ARP4761() have become mandatory for effectively all civil aviation world-wide. Revision A was released in December 2010. It was recognized by the FAA through Advisory Circular AC 20-174 published November 2011. EUROCAE jointly issued the document as ED–79. Revision B was released in December 2023 and inherits the "mandates" conferred through FAA advisory circulars AC 25.1309-1 and AC 20-174 as acceptable means of demonstrating compliance with 14 CFR 25.1309 in the U.S. Federal Aviation Adminis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zonal Safety Analysis
Zonal Safety Analysis (ZSA) is one of three analytical methods which, taken together, form a Common Cause Analysis (CCA) in aircraft safety engineering under SAE ARP4761. The other two methods are Particular Risks Analysis (PRA) and Common Mode Analysis (CMA). Aircraft system safety requires the independence of failure conditions for multiple systems. Independent failures, represented by an AND gate in a fault tree analysis, have a low probability of occurring in the same flight. Common causes result in the loss of independence, which dramatically increases probability of failure. CCA and ZSA are used to find and eliminate or mitigate common causes for multiple failures. General description ZSA is a method of ensuring that the equipment installations within each zone of an aircraft meet adequate safety standards with respect to design and installation standards, interference between systems, and maintenance errors. In those areas of the aeroplane where multiple systems and comp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Safety Engineering
Safety engineering is an engineering Branches of science, discipline which assures that engineered systems provide acceptable levels of safety. It is strongly related to industrial engineering/systems engineering, and the subset system safety engineering. Safety engineering assures that a life-critical system behaves as needed, even when components Failure, fail. Analysis techniques Analysis techniques can be split into two categories: Qualitative research, qualitative and Quantitative research, quantitative methods. Both approaches share the goal of finding causal dependencies between a hazard on system level and failures of individual components. Qualitative approaches focus on the question "What must go wrong, such that a system hazard may occur?", while quantitative methods aim at providing estimations about probabilities, rates and/or severity of consequences. The complexity of the technical systems such as Improvements of Design and Materials, Planned Inspections, Fool-pro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hazard Analysis
A hazard analysis is one of many methods that may be used to assess risk. At its core, the process entails describing a system object (such as a person or machine) that intends to conduct some activity. During the performance of that activity, an adverse event (referred to as a “ factor”) may be encountered that could cause or contribute to an occurrence (mishap, incident, accident). Finally, that occurrence will result in some outcome that may be measured in terms of the degree of loss or harm. This outcome may be measured on a continuous scale, such as an amount of monetary loss, or the outcomes may be categorized into various levels of severity. A Simple Hazard Analysis The first step in hazard analysis is to identify the hazards. If an automobile is an object performing an activity such as driving over a bridge, and that bridge may become icy, then an icy bridge might be identified as a hazard. If this hazard is encountered, it could cause or contribute to the occur ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
DO-178B
DO-178B, Software Considerations in Airborne Systems and Equipment Certification is a guideline dealing with the safety of safety-critical software used in certain airborne systems. It was jointly developed by the safety-critical working group RTCA SC-167 of the Radio Technical Commission for Aeronautics (RTCA) and WG-12 of the European Organisation for Civil Aviation Equipment (EUROCAE). RTCA published the document as RTCA/DO-178B, while EUROCAE published the document as ED-12B. Although technically a guideline, it was a ''de facto'' standard for developing avionics software systems until it was replaced in 2012 by DO-178C. The Federal Aviation Administration (FAA) applies DO-178B as the document it uses for guidance to determine if the software will perform reliably in an airborne environment, when specified by the Technical Standard Order (TSO) for which certification is sought. In the United States, the introduction of TSOs into the airworthiness certification process, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reliability Block Diagram
A reliability block diagram (RBD) is a diagrammatic method for showing how component reliability contributes to the success or failure of a redundant system. RBD is also known as a dependence diagram (DD). An RBD is drawn as a series of blocks connected in parallel or series configuration. Parallel blocks indicate redundant subsystems or components that contribute to a lower failure rate. Each block represents a component of the system with a failure rate. RBDs will indicate the type of redundancy in the parallel path. For example, a group of parallel blocks could require two out of three components to succeed for the system to succeed. By contrast, any failure along a series path causes the entire series path to fail. An RBD may be drawn using switches in place of blocks, where a closed switch represents a working component and an open switch represents a failed component. If a path may be found through the network of switches from beginning to end, the system still works. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
DO-254
RTCA DO-254 / EUROCAE ED-80, Design Assurance Guidance for Airborne Electronic Hardware is a document providing guidance for the development of airborne electronic hardware, published by RTCA, Incorporated and EUROCAE. Initially released in 2000, the DO-254/ED-80 standard was not necessarily considered policy until recognized by the FAA in 2005 through AC 20-152 as a means of compliance for the design assurance of electronic hardware in airborne systems. The guidance in this document is applicable, but not limited, to such electronic hardware items as * Line Replaceable Units (quickly replaceable components) * Circuit board assemblies (CBA) * Custom micro-coded components such as field programmable gate arrays (FPGA), programmable logic devices (PLD), and application-specific integrated circuits (ASIC), including any associated macro functions * Integrated technology components such as hybrid integrated circuits and multi-chip modules * Commercial off-the-shelf (COTS) comp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Society Of Automotive Engineers
SAE International is a global professional association and standards organization based in Warrendale, Pennsylvania, United States. Formerly the Society of Automotive Engineers, the organization adopted its current name in 2006 to reflect both its international membership and the increased scope of its activities beyond automotive engineering and the automotive industry to include aerospace and other transport industries, as well as commercial vehicles including autonomous vehicles such as self-driving cars, trucks, surface vessels, drones, and related technologies. SAE International has over 138,000 global members. Membership is granted to individuals, rather than companies. Aside from its standardization efforts, SAE International also devotes resources to projects and programs in STEM education, professional certification, and collegiate design competitions. History In the early 1900s there were dozens of automobile manufacturers in the United States, and many more w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fault Tree Analysis
Fault tree analysis (FTA) is a type of failure analysis in which an undesired state of a system is examined. This analysis method is mainly used in safety engineering and reliability engineering to understand how systems can fail, to identify the best ways to reduce risk and to determine (or get a feeling for) event rates of a safety accident or a particular system level (functional) failure. FTA is used in the aerospace, nuclear power, chemical and process, pharmaceutical, petrochemical and other high-hazard industries; but is also used in fields as diverse as risk factor identification relating to social service system failure. FTA is also used in software engineering for debugging purposes and is closely related to cause-elimination technique used to detect bugs. In aerospace, the more general term "system failure condition" is used for the "undesired state" / top event of the fault tree. These conditions are classified by the severity of their effects. The most severe conditi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Failure Mode And Effects Analysis
Failure is the social concept of not meeting a desirable or intended Goal, objective, and is usually viewed as the opposite of success. The criteria for failure depends on context, and may be relative to a particular observer or belief system. One person might consider a failure what another person considers a success, particularly in cases of direct competition or a zero-sum game. Similarly, the degree of success or failure in a situation may be differently viewed by distinct observers or participants, such that a situation that one considers to be a failure, another might consider to be a success, a qualified success or a neutral situation. It may also be difficult or impossible to ascertain whether a situation meets criteria for failure or success due to ambiguous or ill-defined definition of those criteria. Finding useful and effective criteria or heuristics to judge the success or failure of a situation may itself be a significant task. Sociology Cultural historian Sco ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
European Aviation Safety Agency
The European Union Aviation Safety Agency (EASA) is an agency of the European Commission with responsibility for civil aviation safety in the European Union. It carries out certification, regulation and standardisation and also performs investigation and monitoring. It collects and analyses safety data, drafts and advises on safety legislation and co-ordinates with similar organisations in other parts of the world. The idea of a European-level aviation safety authority goes back to 1996, but the agency was legally established only in 2002; it began its work in 2003. History Based in Cologne, Germany, the agency was created on 15 July 2002 as the "European Aviation Safety Agency", and reached full functionality in 2008, taking over functions of the Joint Aviation Authorities. It was renamed the "European Union Aviation Safety Agency" in 2018. European Free Trade Association countries participate in the agency. The United Kingdom was a member until the end of the Brexit trans ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |