HOME
*





ADHM Construction
In mathematical physics and gauge theory, the ADHM construction or monad construction is the construction of all instantons using methods of linear algebra by Michael Atiyah, Vladimir Drinfeld, Nigel Hitchin, Yuri I. Manin in their paper "Construction of Instantons." ADHM data The ADHM construction uses the following data: * complex vector spaces ''V'' and ''W'' of dimension ''k'' and ''N'', * ''k'' × ''k'' complex matrices ''B''1, ''B''2, a ''k'' × ''N'' complex matrix ''I'' and a ''N'' × ''k'' complex matrix ''J'', * a real moment map \mu_r = _1,B_1^\dagger _2,B_2^\daggerII^\dagger-J^\dagger J, * a complex moment map \displaystyle\mu_c = _1,B_2IJ. Then the ADHM construction claims that, given certain regularity conditions, * Given ''B''1, ''B''2, ''I'', ''J'' such that \mu_r=\mu_c=0, an anti-self-dual instanton in a SU(''N'') gauge theory with instanton number ''k'' can be constructed, * All anti-self-dual instantons c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Physics
Mathematical physics refers to the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics (also known as physical mathematics). Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical periods. Classical mechanics The rigorous, abstract and advanced reformulation of Newtonian mechanics adopting the Lagrangian mechanics and the Hamiltonian mechanics even in the presence of constraints. Both formulations are embodied in analytical mechanics and lead to understanding the deep interplay of the notions of symmetry (physics), symmetry and conservation law, con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moduli Space
In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects (e.g., the smooth algebraic curves of a fixed genus) can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces is formal moduli. Motivation Moduli spaces are spaces of solutions of geometric classification problems. That is, the points of a moduli space correspond to solutions of geometric problems. Here different solutions are identified if they a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projection (linear Algebra)
In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself (an endomorphism) such that P\circ P=P. That is, whenever P is applied twice to any vector, it gives the same result as if it were applied once (i.e. P is idempotent). It leaves its image unchanged. This definition of "projection" formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on a geometrical object by examining the effect of the projection on points in the object. Definitions A projection on a vector space V is a linear operator P : V \to V such that P^2 = P. When V has an inner product and is complete (i.e. when V is a Hilbert space) the concept of orthogonality can be used. A projection P on a Hilbert space V is called an orthogonal projection if it satisfies \langle P \mathbf x, \mathbf y \rangle = \langle \mathbf x, P \mathbf y \rangle for all \mathbf x, \mathbf y \in V. A projection on a Hilbert ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermitian Matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -th row and -th column, for all indices and : or in matrix form: A \text \quad \iff \quad A = \overline . Hermitian matrices can be understood as the complex extension of real symmetric matrices. If the conjugate transpose of a matrix A is denoted by A^\mathsf, then the Hermitian property can be written concisely as Hermitian matrices are named after Charles Hermite, who demonstrated in 1855 that matrices of this form share a property with real symmetric matrices of always having real eigenvalues. Other, equivalent notations in common use are A^\mathsf = A^\dagger = A^\ast, although note that in quantum mechanics, A^\ast typically means the complex conjugate only, and not the conjugate transpose. Alternative characterizations Hermit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quaternion as the quotient of two '' directed lines'' in a three-dimensional space, or, equivalently, as the quotient of two vectors. Multiplication of quaternions is noncommutative. Quaternions are generally represented in the form :a + b\ \mathbf i + c\ \mathbf j +d\ \mathbf k where , and are real numbers; and , and are the ''basic quaternions''. Quaternions are used in pure mathematics, but also have practical uses in applied mathematics, particularly for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics, computer vision, and crystallographic texture analysis. They can be used alongside other methods of rotation, such as Euler angles and rotation matrices, or as an alternative to them ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spacetime
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why different observers perceive differently where and when events occur. Until the 20th century, it was assumed that the three-dimensional geometry of the universe (its spatial expression in terms of coordinates, distances, and directions) was independent of one-dimensional time. The physicist Albert Einstein helped develop the idea of spacetime as part of his theory of relativity. Prior to his pioneering work, scientists had two separate theories to explain physical phenomena: Isaac Newton's laws of physics described the motion of massive objects, while James Clerk Maxwell's electromagnetic models explained the properties of light. However, in 1905, Einstein based a work on special relativity on two postulates: * The laws of physics are invariant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euclidean Space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension (mathematics), dimension, including the three-dimensional space and the ''Euclidean plane'' (dimension two). The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient History of geometry#Greek geometry, Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the Greek mathematics, ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of ''mathematical proof, proving'' all properties of the space as theorems, by starting from a few fundamental properties, called ''postulates'', which either were considered as eviden ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Top Quark Condensate
In particle physics, the top quark condensate theory (or top condensation) is an alternative to the Standard Model fundamental Higgs field, where the Higgs boson is a composite field, composed of the top quark and its antiquark. The top quark-antiquark pairs are bound together by a new force called topcolor, analogous to the binding of Cooper pairs in a BCS superconductor, or mesons in the strong interactions. The top quark is very heavy, with a measured mass of approximately 174 GeV (comparable to the electroweak scale), and so its Yukawa coupling is of order unity, suggesting the possibility of strong coupling dynamics at high energy scales. This model attempts to explain how the electroweak scale may match the top quark mass. History The idea was described by Yoichiro Nambu and subsequently developed by Miransky, Tanabashi, and Yamawaki (1989) and Bardeen, Hill, and Lindner (1990), who connected the theory to the renormalization group, and improved its predictions. The re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Squark
In supersymmetric extension to the Standard Model (SM) of physics, a sfermion is a hypothetical spin-0 superpartner particle (sparticle) of its associated fermion. Each particle has a superpartner with spin that differs by . Fermions in the SM have spin- and, therefore, sfermions have spin 0. The name 'sfermion' was formed by the general rule of prefixing an 's' to the name of its superpartner, denoting that it is a scalar particle with spin 0. For instance, the electron's superpartner is the selectron and the top quark's superpartner is the stop squark. One corollary from supersymmetry is that sparticles have the same gauge numbers as their SM partners. This means that sparticle–particle pairs have the same color charge, weak isospin charge, and hypercharge (and consequently electric charge). Unbroken supersymmetry also implies that sparticle–particle pairs have the same mass. This is evidently not the case, since these sparticles would have already been detect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fayet–Iliopoulos D-term
In theoretical physics, the Fayet–Iliopoulos D-term (introduced by Pierre Fayet and John Iliopoulos) is a D-term in a supersymmetric theory obtained from a vector superfield ''V'' simply by an integral over all of superspace: : S_ = \xi \int d^4\theta \, V Because a natural trace must be a part of the expression, the action only exists for U(1) vector superfields. In terms of the components, it is proportional simply to the last auxiliary D-term of the superfield ''V''. It means that the corresponding ''D'' that appears in D-flatness conditions (and whose square enters the ordinary potential) is additively shifted by \xi, the coefficient. References

* Supersymmetric quantum field theory {{quantum-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supersymmetry
In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics. In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a ''"selectron"'' (superpartner electron), a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly " unbroken" supersymmetry, each pair of superpartners would share the same mass and intern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Albert Schwarz
Albert Solomonovich Schwarz (; russian: А. С. Шварц; born June 24, 1934) is a Soviet and American mathematician and a theoretical physicist educated in the Soviet Union and now a professor at the University of California, Davis. Early life Schwarz was born in Kazan, Soviet Union. His parents were arrested in the Stalinist purges in 1937. He has two children: a son, Michael A. Schwarz, and a daughter. Personal life He has a son and a daughter. Education and Career Schwarz studied under Vadim Yefremovich at Ivanovo Pedagogical Institute, having been denied admittance to Moscow State University on the grounds that he was the son of "enemies of the people." After defending his dissertation in 1958, he took a job at Voronezh University. In 1964 he was offered a job at Moscow Engineering Physics Institute. He immigrated to the United States in 1989. Schwarz is one of the pioneers of Morse theory and brought up the first example of a topological quantum field theory. The Schw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]