HOME
*





90,000
90,000 (ninety thousand) is the natural number following 89,999 and preceding 90,001. It is the sum of the cubes of the first 24 positive integers, and is the square of 300. Selected numbers in the range 90,000–99,999 * 90,625 = the only five-digit automorphic number: 906252 = 8212890625 * 91,125 = 453 * 91,144 = Fine number * 93,312 = Leyland number: 66 + 66. Also a 3-smooth number. * 94,249 = palindromic square: 3072 * 94,932 = Leyland number: 75 + 57 * 95,121 = Kaprekar number: 951212 = 9048004641; 90480 + 04641 = 95121 * 96,557 = Markov number: 52 + 64662 + 965572 = 3 × 5 × 6466 × 96557 * 97,336 = 463 * 98,304 = 3- smooth number * 99,066 = largest number whose square uses all of the decimal digits once: 990662 = 9814072356. It is also a rotationally symmetric ambigram in decimal. * 99,991 = largest five-digit prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


80,000
80,000 (eighty thousand) is the natural number after 79,999 and before 80,001. Selected numbers in the range 80,000–89,999 * 80,286 = model number of the Intel 80286 chip * 80,386 = model number of the Intel 80386 chip * 82,467 = number of square (0,1)-matrices without zero rows and with exactly 6 entries equal to 1 * 80,486 = model number of the Intel 80486 chip * 80,782 = Pell number ''P''14 * 82,000 = the only currently known number greater than 1 that can be written in bases from 2 through 5 using only 0s and 1s. * 82,025 = number of primes \leq 2^. * 82,656 = Kaprekar number: 826562 = 6832014336; 68320 + 14336 = 82656 * 82,944 = 3- smooth number: 210 × 34 * 83,097 = Riordan number * 83,160 = highly composite number * 83,357 = Friedman prime * 83,521 = 174 * 84,187 – number of parallelogram polyominoes with 15 cells. * 85,085 = product of five consecutive primes: 5 × 7 × 11 × 13 × 17 * 85,184 = 443 * 86,400 = seconds in a day: 24 × 60 × 60 and common DNS defau ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automorphic Number
In mathematics, an automorphic number (sometimes referred to as a circular number) is a natural number in a given number base b whose square "ends" in the same digits as the number itself. Definition and properties Given a number base b, a natural number n with k digits is an automorphic number if n is a fixed point of the polynomial function f(x) = x^2 over \mathbb/b^k\mathbb, the ring of integers modulo b^k. As the inverse limit of \mathbb/b^k\mathbb is \mathbb_b, the ring of b-adic integers, automorphic numbers are used to find the numerical representations of the fixed points of f(x) = x^2 over \mathbb_b. For example, with b = 10, there are four 10-adic fixed points of f(x) = x^2, the last 10 digits of which are one of these : \ldots 0000000000 : \ldots 0000000001 : \ldots 8212890625 : \ldots 1787109376 Thus, the automorphic numbers in base 10 are 0, 1, 5, 6, 25, 76, 376, 625, 9376, 90625, 109376, 890625, 2890625, 7109376, 12890625, 87109376, 212890625, 787109376, 17871 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Leyland Number
In number theory, a Leyland number is a number of the form :x^y + y^x where ''x'' and ''y'' are integers greater than 1. They are named after the mathematician Paul Leyland. The first few Leyland numbers are : 8, 17, 32, 54, 57, 100, 145, 177, 320, 368, 512, 593, 945, 1124 . The requirement that ''x'' and ''y'' both be greater than 1 is important, since without it every positive integer would be a Leyland number of the form ''x''1 + 1''x''. Also, because of the commutative property of addition, the condition ''x'' ≥ ''y'' is usually added to avoid double-covering the set of Leyland numbers (so we have 1 References External links

* {{DEFAULTSORT:Leyland Number Integer sequences ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Palindromic Number
A palindromic number (also known as a numeral palindrome or a numeric palindrome) is a number (such as 16461) that remains the same when its digits are reversed. In other words, it has reflectional symmetry across a vertical axis. The term ''palindromic'' is derived from palindrome, which refers to a word (such as ''rotor'' or ''racecar'') whose spelling is unchanged when its letters are reversed. The first 30 palindromic numbers (in decimal) are: : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, … . Palindromic numbers receive most attention in the realm of recreational mathematics. A typical problem asks for numbers that possess a certain property ''and'' are palindromic. For instance: * The palindromic primes are 2, 3, 5, 7, 11, 101, 131, 151, ... . * The palindromic square numbers are 0, 1, 4, 9, 121, 484, 676, 10201, 12321, ... . It is obvious that in any base there are infinitely many palindr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kaprekar Number
In mathematics, a natural number in a given number base is a p-Kaprekar number if the representation of its square in that base can be split into two parts, where the second part has p digits, that add up to the original number. The numbers are named after D. R. Kaprekar. Definition and properties Let n be a natural number. We define the Kaprekar function for base b > 1 and power p > 0 F_ : \mathbb \rightarrow \mathbb to be the following: :F_(n) = \alpha + \beta, where \beta = n^2 \bmod b^p and :\alpha = \frac A natural number n is a p-Kaprekar number if it is a fixed point for F_, which occurs if F_(n) = n. 0 and 1 are trivial Kaprekar numbers for all b and p, all other Kaprekar numbers are nontrivial Kaprekar numbers. For example, in base 10, 45 is a 2-Kaprekar number, because : \beta = n^2 \bmod b^p = 45^2 \bmod 10^2 = 25 : \alpha = \frac = \frac = 20 : F_(45) = \alpha + \beta = 20 + 25 = 45 A natural number n is a sociable Kaprekar number if it is a periodic point for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Markov Number
A Markov number or Markoff number is a positive integer ''x'', ''y'' or ''z'' that is part of a solution to the Markov Diophantine equation :x^2 + y^2 + z^2 = 3xyz,\, studied by . The first few Markov numbers are : 1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, ... appearing as coordinates of the Markov triples :(1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), (2, 5, 29), (1, 13, 34), (1, 34, 89), (2, 29, 169), (5, 13, 194), (1, 89, 233), (5, 29, 433), (1, 233, 610), (2, 169, 985), (13, 34, 1325), ... There are infinitely many Markov numbers and Markov triples. Markov tree There are two simple ways to obtain a new Markov triple from an old one (''x'', ''y'', ''z''). First, one may permute the 3 numbers ''x'',''y'',''z'', so in particular one can normalize the triples so that ''x'' ≤ ''y'' ≤ ''z''. Second, if (''x'', ''y'', ''z'') is a Markov triple then by Vieta jumping so is (''x'', ''y'', 3''xy''&n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Smooth Number
In number theory, an ''n''-smooth (or ''n''-friable) number is an integer whose prime factors are all less than or equal to ''n''. For example, a 7-smooth number is a number whose every prime factor is at most 7, so 49 = 72 and 15750 = 2 × 32 × 53 × 7 are both 7-smooth, while 11 and 702 = 2 × 33 × 13 are not 7-smooth. The term seems to have been coined by Leonard Adleman. Smooth numbers are especially important in cryptography, which relies on factorization of integers. The 2-smooth numbers are just the powers of 2, while 5-smooth numbers are known as regular numbers. Definition A positive integer is called B-smooth if none of its prime factors are greater than B. For example, 1,620 has prime factorization 22 × 34 × 5; therefore 1,620 is 5-smooth because none of its prime factors are greater than 5. This definition includes numbers that lack some of the smaller prime factors; for example, both 10 and 12 are 5-smooth, even though they miss out the prime factors 3 and 5, resp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Square (algebra)
In mathematics, a square is the result of multiplication, multiplying a number by itself. The verb "to square" is used to denote this operation. Squaring is the same as exponentiation, raising to the power 2 (number), 2, and is denoted by a superscript 2; for instance, the square of 3 may be written as 32, which is the number 9. In some cases when superscripts are not available, as for instance in programming languages or plain text files, the notations ''x''^2 (caret) or ''x''**2 may be used in place of ''x''2. The adjective which corresponds to squaring is ''wikt:quadratic, quadratic''. The square of an integer may also be called a square number or a perfect square. In algebra, the operation of squaring is often generalized to polynomials, other expression (mathematics), expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear function (calculus), linear polynomial is the quadratic polynomial . One of the imp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Decimal
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as ''decimal notation''. A ''decimal numeral'' (also often just ''decimal'' or, less correctly, ''decimal number''), refers generally to the notation of a number in the decimal numeral system. Decimals may sometimes be identified by a decimal separator (usually "." or "," as in or ). ''Decimal'' may also refer specifically to the digits after the decimal separator, such as in " is the approximation of to ''two decimals''". Zero-digits after a decimal separator serve the purpose of signifying the precision of a value. The numbers that may be represented in the decimal system are the decimal fractions. That is, fractions of the form , where is an integer, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Numerical Digit
A numerical digit (often shortened to just digit) is a single symbol used alone (such as "2") or in combinations (such as "25"), to represent numbers in a positional numeral system. The name "digit" comes from the fact that the ten digits (Latin ''digiti'' meaning fingers) of the hands correspond to the ten symbols of the common base 10 numeral system, i.e. the decimal (ancient Latin adjective ''decem'' meaning ten) digits. For a given numeral system with an integer base, the number of different digits required is given by the absolute value of the base. For example, the decimal system (base 10) requires ten digits (0 through to 9), whereas the binary system (base 2) requires two digits (0 and 1). Overview In a basic digital system, a numeral is a sequence of digits, which may be of arbitrary length. Each position in the sequence has a place value, and each digit has a value. The value of the numeral is computed by multiplying each digit in the sequence by its ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]