HOME
*





865 Zubaida
865 Zubaida is an elongated, stony background asteroid from the inner regions of the asteroid belt. It was discovered on 15 February 1917, by astronomer Max Wolf at the Heidelberg Observatory in southwest Germany, and given the provisional designations and . The uncommon L-type asteroid has a rotation period of 11.4 hours and measures approximately in diameter. It was named after Zobeide, a character in the opera '' Abu Hassan'' by Carl Maria von Weber (1786–1826). Orbit and classification ''Zubaida'' is a non-family asteroid of the main belt's background population when applying the hierarchical clustering method to its proper orbital elements. It orbits the Sun in the inner asteroid belt at a distance of 1.9–2.9  AU once every 3 years and 9 months (1,373 days; semi-major axis of 2.42 AU). Its orbit has an eccentricity of 0.19 and an inclination of 13 ° with respect to the ecliptic. The body's observation arc begins with its first observation as at H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Max Wolf
Maximilian Franz Joseph Cornelius Wolf (21 June 1863 – 3 October 1932) was a German astronomer and a pioneer in the field of astrophotography. He was the chairman of astronomy at the University of Heidelberg and director of the Heidelberg-Königstuhl State Observatory from 1902 until his death in 1932. Early life Max Wolf was born in Heidelberg, Germany on 21 June 1863, the son of medical doctor Franz Wolf. His father encouraged an interest in science and built an observatory for his son in the garden of the family home. It is from here that Wolf was credited with his first astronomical discovery, comet 14P/Wolf, in 1884. Life at the university Wolf attended his local university and, in 1888, at the age of 25, was awarded a Ph.D. by the University of Heidelberg. He spent one year of post-graduate study in Stockholm, the only significant time he would spend outside of Heidelberg in his life. He returned to the University of Heidelberg and accepted the position of ''pri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minor Planet Provisional Designation
Provisional designation in astronomy is the naming convention applied to astronomical objects immediately following their discovery. The provisional designation is usually superseded by a permanent designation once a reliable orbit has been calculated. Approximately 47% of the more than 1,100,000 known minor planets remain provisionally designated, as hundreds of thousands have been discovered in the last two decades. __TOC__ Minor planets The current system of provisional designation of minor planets (asteroids, centaurs and trans-Neptunian objects) has been in place since 1925. It superseded several previous conventions, each of which was in turn rendered obsolete by the increasing numbers of minor planet discoveries. A modern or new-style provisional designation consists of the year of discovery, followed by two letters and, possibly, a suffixed number. New-style provisional designation For example, the provisional designation stands for the 3910th body identified du ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Herget's Discovery Circumstances
Paul Herget (January 30, 1908 – August 27, 1981) was an American astronomer and director of the Cincinnati Observatory, who established the Minor Planet Center after World War II. Career Herget taught astronomy at the University of Cincinnati. He was a pioneer in the use of machine methods, and eventually digital computers, in the solving of scientific and specifically astronomical problems (for example, in the calculation of ephemeris tables for minor planets). During World War II he applied these same talents to the war effort, helping to locate U-boats by means of the application of spherical trigonometry. Herget established the Minor Planet Center at the university after the war in 1947. He was also named director of the Cincinnati Observatory. The Minor Planet Center was eventually relocated in 1978 to the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, where it still operates. Awards and honors * In 1965 he was awarded the James Craig Watson Me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paul Herget
Paul Herget (January 30, 1908 – August 27, 1981) was an American astronomer and director of the Cincinnati Observatory, who established the Minor Planet Center after World War II. Career Herget taught astronomy at the University of Cincinnati. He was a pioneer in the use of machine methods, and eventually digital computers, in the solving of scientific and specifically astronomical problems (for example, in the calculation of ephemeris tables for minor planets). During World War II he applied these same talents to the war effort, helping to locate U-boats by means of the application of spherical trigonometry. Herget established the Minor Planet Center at the university after the war in 1947. He was also named director of the Cincinnati Observatory. The Minor Planet Center was eventually relocated in 1978 to the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, where it still operates. Awards and honors * In 1965 he was awarded the James Craig Watson Me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


The Names Of The Minor Planets
Paul Herget (January 30, 1908 – August 27, 1981) was an American astronomer and director of the Cincinnati Observatory, who established the Minor Planet Center after World War II. Career Herget taught astronomy at the University of Cincinnati. He was a pioneer in the use of machine methods, and eventually digital computers, in the solving of scientific and specifically astronomical problems (for example, in the calculation of ephemeris tables for minor planets). During World War II he applied these same talents to the war effort, helping to locate U-boats by means of the application of spherical trigonometry. Herget established the Minor Planet Center at the university after the war in 1947. He was also named director of the Cincinnati Observatory. The Minor Planet Center was eventually relocated in 1978 to the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, where it still operates. Awards and honors * In 1965 he was awarded the James Craig Watson Me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minor Planet
According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term ''minor planet'', but that year's meeting reclassified minor planets and comets into dwarf planets and small Solar System bodies (SSSBs).Press release, IAU 2006 General Assembly: Result of the IAU Resolution votes
International Astronomical Union, August 24, 2006. Accessed May 5, 2008.
Minor planets include asteroids (



Observation Arc
In observational astronomy, the observation arc (or arc length) of a Solar System body is the time period between its earliest and latest observations, used for tracing the body's path. It is usually given in days or years. The term is mostly used in the discovery and tracking of asteroids and comets. Arc length has the greatest influence on the accuracy of an orbit. The number and spacing of intermediate observations has a lesser effect. Short arcs A very short arc leaves a high uncertainty parameter. The object might be in one of many different orbits, at many distances from Earth. In some cases, the initial arc was too short to determine if the object was in orbit around the Earth, or orbiting out in the asteroid belt. With a 1-day observation arc, was thought to be a trans-Neptunian dwarf planet, but is now known to be a 1 km main-belt asteroid. With an observation arc of 3 days, was thought to be a Mars-crossing asteroid that could be a threat to Earth, but was later ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ecliptic
The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars. The ecliptic is an important reference plane and is the basis of the ecliptic coordinate system. Sun's apparent motion The ecliptic is the apparent path of the Sun throughout the course of a year. Because Earth takes one year to orbit the Sun, the apparent position of the Sun takes one year to make a complete circuit of the ecliptic. With slightly more than 365 days in one year, the Sun moves a little less than 1° eastward every day. This small difference in the Sun's position against the stars causes any particular spot on Earth's surface to catch up with (and stand directly north or south of) the Sun about four minutes later each day than it would if Earth did not orbit; a day on Earth is therefore 24 hours ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbital Inclination
Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the Equator, the plane of the satellite's orbit is the same as the Earth's equatorial plane, and the satellite's orbital inclination is 0°. The general case for a circular orbit is that it is tilted, spending half an orbit over the northern hemisphere and half over the southern. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°. Orbits The inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the orbital plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planet's equator. For pla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbital Eccentricity
In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit (or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the Galaxy. Definition In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit. The eccentricity of this Kepler orbit is a non-negative number that defines its shape. The eccentricity may take the following values: * circular orbit: ''e'' = 0 * elliptic orbit: 0 < ''e'' < 1 *
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semi-major Axis
In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section. For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle. The length of the semi-major axis of an ellipse is related to the semi-minor axis's length through the eccentricity and the semi-latus rectum \ell, as follows: The semi-major axis of a hyperbola is, depending on the convention, plus or minus one half of the distance between the two branches. Thus it is the distance from the center ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Proper Orbital Elements
__NOTOC__ The proper orbital elements or proper elements of an orbit are constants of motion of an object in space that remain practically unchanged over an astronomically long timescale. The term is usually used to describe the three quantities: *''proper semimajor axis'' (''ap''), *''proper eccentricity'' (''ep''), and *''proper inclination'' (''ip''). The proper elements can be contrasted with the osculating Keplerian orbital elements observed at a particular time or epoch, such as the semi-major axis, eccentricity, and inclination. Those osculating elements change in a quasi-periodic and (in principle) predictable manner due to such effects as perturbations from planets or other bodies, and precession (e.g. perihelion precession). In the Solar System, such changes usually occur on timescales of thousands of years, while proper elements are meant to be practically constant over at least tens of millions of years. For most bodies, the osculating elements are relatively close ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]