HOME
*





4000 (number)
4000 (four thousand) is the natural number following 3000 (number)#3900 to 3999, 3999 and preceding 4001. It is a decagonal number. Selected numbers in the range 4001–4999 4001 to 4099 * 4005 – triangular number * 4007 – safe prime * 4010 – magic constant of ''n'' × ''n'' normal magic square and Eight queens puzzle, ''n''-queens problem for ''n'' = 20. * 4013 – balanced prime * 4019 – Sophie Germain prime * 4027 – super-prime * 4028 – sum of the first 45 primes * 4030 – third weird number * 4031 – sum of the cubes of the first six primes * 4032 – pronic number * 4033 – sixth super-Poulet number; strong pseudoprime in base 2 * 4060 – tetrahedral number * 4073 – Sophie Germain prime * 4079 – safe prime * 4091 – super-prime * 4092 – an occasional glitch in the game The Legend of Zelda: Ocarina of Time causes the Gossip Stones to say this number * 4095 – triangular number and odd abundant number; number of divisors in the sum of the fifth and lar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abundant Number
In number theory, an abundant number or excessive number is a number for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16. The amount by which the sum exceeds the number is the abundance. The number 12 has an abundance of 4, for example. Definition A number ''n'' for which the ''sum'' ''of'' ''divisors'' ''σ''(''n'') > 2''n'', or, equivalently, the sum of proper divisors (or aliquot sum) ''s''(''n'') > ''n''. Abundance is the value ''σ''(''n'') − ''2n'' (or ''s''(''n'') − ''n''). Examples The first 28 abundant numbers are: :12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, ... . For example, the proper divisors of 24 are 1, 2, 3, 4, 6, 8, and 12, whose sum is 36. Because 36 is greater than 24, the number 24 is abundant. Its abundance is 36 − 24 = 12. Prope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Markov Number
A Markov number or Markoff number is a positive integer ''x'', ''y'' or ''z'' that is part of a solution to the Markov Diophantine equation :x^2 + y^2 + z^2 = 3xyz,\, studied by . The first few Markov numbers are : 1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, ... appearing as coordinates of the Markov triples :(1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), (2, 5, 29), (1, 13, 34), (1, 34, 89), (2, 29, 169), (5, 13, 194), (1, 89, 233), (5, 29, 433), (1, 233, 610), (2, 169, 985), (13, 34, 1325), ... There are infinitely many Markov numbers and Markov triples. Markov tree There are two simple ways to obtain a new Markov triple from an old one (''x'', ''y'', ''z''). First, one may permute the 3 numbers ''x'',''y'',''z'', so in particular one can normalize the triples so that ''x'' ≤ ''y'' ≤ ''z''. Second, if (''x'', ''y'', ''z'') is a Markov triple then by Vieta jumping so is (''x'', ''y'', 3''xy''&n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fibonacci Number
In mathematics, the Fibonacci numbers, commonly denoted , form a sequence, the Fibonacci sequence, in which each number is the sum of the two preceding ones. The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes (as did Fibonacci) from 1 and 2. Starting from 0 and 1, the first few values in the sequence are: :0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144. The Fibonacci numbers were first described in Indian mathematics, as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths. They are named after the Italian mathematician Leonardo of Pisa, later known as Fibonacci, who introduced the sequence to Western European mathematics in his 1202 book ''Liber Abaci''. Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is an entire journal dedicated to their study, the ''Fibonacci Quarterly''. Applications of Fibonacci numbers include co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Centered Heptagonal Number
A centered heptagonal number is a centered figurate number that represents a heptagon with a dot in the center and all other dots surrounding the center dot in successive heptagonal layers. The centered heptagonal number for ''n'' is given by the formula :\over2. The first few centered heptagonal numbers are 1, 8, 22, 43, 71, 106, 148, 197, 253, 316, 386, 463, 547, 638, 736, 841, 953 Properties * Centered heptagonal numbers alternate parity in the pattern odd-even-even-odd. * A heptagonal numbers can expressed as a multiple of a triangular number by 7, plus one: :C_ = 7 * T_ + 1 *C_ is the sum of the integers between n+1 and 3n+1 (including) minus the sum of the integers from 0 to n (including). Centered heptagonal prime A centered heptagonal prime is a centered heptagonal number that is prime. The first few centered heptagonal primes are :43, 71, 197, 463, 547, 953, 1471, 1933, 2647, 2843, 3697, ... Due to parity, the centered heptagonal primes are in the form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Base-12
The duodecimal system (also known as base 12, dozenal, or, rarely, uncial) is a positional notation numeral system using twelve as its base. The number twelve (that is, the number written as "12" in the decimal numerical system) is instead written as "10" in duodecimal (meaning "1 dozen and 0 units", instead of "1 ten and 0 units"), whereas the digit string "12" means "1 dozen and 2 units" (decimal 14). Similarly, in duodecimal, "100" means "1  gross", "1000" means "1 great gross", and "0.1" means "1 twelfth" (instead of their decimal meanings "1 hundred", "1 thousand", and "1 tenth", respectively). Various symbols have been used to stand for ten and eleven in duodecimal notation; this page uses and , as in hexadecimal, which make a duodecimal count from zero to twelve read 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, , , 10. The Dozenal Societies of America and Great Britain (organisations promoting the use of duodecimal) use turned digits in their published mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Duodecimal
The duodecimal system (also known as base 12, dozenal, or, rarely, uncial) is a positional notation numeral system using twelve as its base. The number twelve (that is, the number written as "12" in the decimal numerical system) is instead written as "10" in duodecimal (meaning "1 dozen and 0 units", instead of "1 ten and 0 units"), whereas the digit string "12" means "1 dozen and 2 units" (decimal 14). Similarly, in duodecimal, "100" means "1  gross", "1000" means "1 great gross", and "0.1" means "1 twelfth" (instead of their decimal meanings "1 hundred", "1 thousand", and "1 tenth", respectively). Various symbols have been used to stand for ten and eleven in duodecimal notation; this page uses and , as in hexadecimal, which make a duodecimal count from zero to twelve read 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, , , 10. The Dozenal Societies of America and Great Britain (organisations promoting the use of duodecimal) use turned digits in their published ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclic Number
A cyclic number is an integer for which cyclic permutations of the digits are successive integer multiples of the number. The most widely known is the six-digit number 142857, whose first six integer multiples are :142857 × 1 = 142857 :142857 × 2 = 285714 :142857 × 3 = 428571 :142857 × 4 = 571428 :142857 × 5 = 714285 :142857 × 6 = 857142 Details To qualify as a cyclic number, it is required that consecutive multiples be cyclic permutations. Thus, the number 076923 would not be considered a cyclic number, because even though all cyclic permutations are multiples, they are not consecutive integer multiples: :076923 × 1 = 076923 :076923 × 3 = 230769 :076923 × 4 = 307692 :076923 × 9 = 692307 :076923 × 10 = 769230 :076923 × 12 = 923076 The following trivial cases are typically excluded: #single digits, e.g.: 5 #repeated digits, e.g.: 555 #repeated cyclic numbers, e.g.: 142857142857 If leading zeros are not p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Centered Square Number
In elementary number theory, a centered square number is a centered figurate number that gives the number of dots in a square with a dot in the center and all other dots surrounding the center dot in successive square layers. That is, each centered square number equals the number of dots within a given city block distance of the center dot on a regular square lattice. While centered square numbers, like figurate numbers in general, have few if any direct practical applications, they are sometimes studied in recreational mathematics for their elegant geometric and arithmetic properties. The figures for the first four centered square numbers are shown below: : Each centered square number is the sum of successive squares. Example: as shown in the following figure of Floyd's triangle, 25 is a centered square number, and is the sum of the square 16 (yellow rhombus formed by shearing a square) and of the next smaller square, 9 (sum of two blue triangles): Relationships with o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bell Number
In combinatorial mathematics, the Bell numbers count the possible partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan. In an example of Stigler's law of eponymy, they are named after Eric Temple Bell, who wrote about them in the 1930s. The Bell numbers are denoted B_n, where n is an integer greater than or equal to zero. Starting with B_0 = B_1 = 1, the first few Bell numbers are :1, 1, 2, 5, 15, 52, 203, 877, 4140, ... . The Bell number B_n counts the number of different ways to partition a set that has exactly n elements, or equivalently, the number of equivalence relations on it. B_n also counts the number of different rhyme schemes for n -line poems. As well as appearing in counting problems, these numbers have a different interpretation, as moments of probability distributions. In particular, B_n is the n -th moment of a Poisson distribution with mean 1. Counting Set partitions In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


4104 (number)
4104 (four thousand one hundred ndfour) is the natural number following 4103 and preceding 4105. It is the second positive integer which can be expressed as the sum of two positive cubes in two different ways. The first such number, 1729, is called the "Ramanujan–Hardy number". 4104 is the sum of 4096 + 8 (that is, 163 + 23), and also the sum of 3375 + 729 (that is, 153 + 93). See also * Taxicab number In mathematics, the ''n''th taxicab number, typically denoted Ta(''n'') or Taxicab(''n''), also called the ''n''th Hardy–Ramanujan number, is defined as the smallest integer that can be expressed as a sum of two ''positive'' integer cubes in ... * 1729 External links MathWorld: Hardy–Ramanujan Number {{DEFAULTSORT:4104 (Number) Integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Superperfect Number
In mathematics, a superperfect number is a positive integer ''n'' that satisfies :\sigma^2(n)=\sigma(\sigma(n))=2n\, , where σ is the divisor summatory function. Superperfect numbers are a generalization of perfect numbers. The term was coined by D. Suryanarayana (1969). The first few superperfect numbers are : : 2, 4, 16, 64, 4096, 65536, 262144, 1073741824, ... . To illustrate: it can be seen that 16 is a superperfect number as σ(16) = 1 + 2 + 4 + 8 + 16 = 31, and σ(31) = 1 + 31 = 32, thus σ(σ(16)) = 32 = 2 × 16. If ''n'' is an ''even'' superperfect number, then ''n'' must be a power of 2, 2''k'', such that 2''k''+1 − 1 is a Mersenne prime. It is not known whether there are any odd Odd means unpaired, occasional, strange or unusual, or a person who is viewed as eccentric. Odd may also refer to: Acronym * ODD (Text Encoding Initiative) ("One Document Does it all"), an abstracted literate-programming format for describing X ... superperfect numbers. An odd sup ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]