3281 Maupertuis
   HOME
*





3281 Maupertuis
3281 Maupertuis ( ''prov. designation'': ) is a bright Vesta asteroid from the inner regions of the asteroid belt. It was discovered on 24 February 1938, by Finnish astronomer Yrjö Väisälä at the Turku Observatory in southwest Finland. The likely elongated V-type asteroid has a rotation period of 6.7 hours and measures approximately in diameter. It was named after French geodesist and mathematician Pierre Louis Maupertuis. Orbit and classification ''Maupertuis'' is a member of the Vesta family (), a giant asteroid family of typically bright V-type asteroids. Vestian asteroids have a composition akin to cumulate eucrites (HED meteorites) and are thought to have originated deep within 4 Vesta's crust, possibly from the Rheasilvia crater, a large impact crater on its southern hemisphere near the South pole, formed as a result of a sub-catastrophic collision. Vesta is the main belt's second-largest and second-most-massive body after . Based on osculating Keplerian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lightcurve
In astronomy, a light curve is a graph of light intensity of a celestial object or region as a function of time, typically with the magnitude of light received on the y axis and with time on the x axis. The light is usually in a particular frequency interval or band. Light curves can be periodic, as in the case of eclipsing binaries, Cepheid variables, other periodic variables, and transiting extrasolar planets, or aperiodic, like the light curve of a nova, a cataclysmic variable star, a supernova or a microlensing event or binary as observed during occultation events. The study of the light curve, together with other observations, can yield considerable information about the physical process that produces it or constrain the physical theories about it. Variable stars Graphs of the apparent magnitude of a variable star over time are commonly used to visualise and analyse their behaviour. Although the categorisation of variable star types is increasingly done from their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Turku Observatory
Turku ( ; ; sv, Åbo, ) is a city and former capital on the southwest coast of Finland at the mouth of the Aura River, in the region of Finland Proper (''Varsinais-Suomi'') and the former Turku and Pori Province (''Turun ja Porin lääni''; 1634–1997). The region was originally called Suomi (Finland), which later became the name for the whole country. As of 31 March 2021, the population of Turku was 194,244 making it the sixth largest city in Finland after Helsinki, Espoo, Tampere, Vantaa and Oulu. There were 281,108 inhabitants living in the Turku Central Locality, ranking it as the third largest urban area in Finland after the Capital Region area and Tampere Central Locality. The city is officially bilingual as percent of its population identify Swedish as a mother-tongue. It is unknown when Turku gained city rights. The Pope Gregory IX first mentioned the town ''Aboa'' in his ''Bulla'' in 1229 and the year is now used as the foundation year of Turku. Turku is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbital Eccentricity
In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit (or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the Galaxy. Definition In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit. The eccentricity of this Kepler orbit is a non-negative number that defines its shape. The eccentricity may take the following values: * circular orbit: ''e'' = 0 * elliptic orbit: 0 < ''e'' < 1 *
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semi-major Axis
In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section. For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle. The length of the semi-major axis of an ellipse is related to the semi-minor axis's length through the eccentricity and the semi-latus rectum \ell, as follows: The semi-major axis of a hyperbola is, depending on the convention, plus or minus one half of the distance between the two branches. Thus it is the distance from the cente ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbital Elements
Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same orbit, but certain schemes, each consisting of a set of six parameters, are commonly used in astronomy and orbital mechanics. A real orbit and its elements change over time due to gravitational perturbations by other objects and the effects of general relativity. A Kepler orbit is an idealized, mathematical approximation of the orbit at a particular time. Keplerian elements The traditional orbital elements are the six Keplerian elements, after Johannes Kepler and his laws of planetary motion. When viewed from an inertial frame, two orbiting bodies trace out distinct trajectories. Each of these trajectories has its focus at the common center of mass. When viewed from a non-inertial frame centered on one of the bodies, only the trajec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Exceptional Asteroids
The following is a collection of lists of asteroids of the Solar System that are exceptional in some way, such as their size or orbit. For the purposes of this article, "asteroid" refers to minor planets out to the orbit of Neptune, and includes the dwarf planet 1 Ceres, the Jupiter trojans and the centaurs, but not trans-Neptunian objects (objects in the Kuiper belt, scattered disc or inner Oort cloud). For a complete list of minor planets in numerical order, see List of minor planets. Background Asteroids are given minor planet numbers, but not all minor planets are asteroids. Minor planet numbers are also given to objects of the Kuiper belt, which is similar to the asteroid belt but farther out (around 30–60 AU), whereas asteroids are mostly between 2–3 AU from the Sun and at the orbit of Jupiter 5 AU from the Sun. Also, comets are not typically included under minor planet numbers, and have their own naming conventions. Asteroids are given a uniq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Impact Crater
An impact crater is a circular depression in the surface of a solid astronomical object formed by the hypervelocity impact of a smaller object. In contrast to volcanic craters, which result from explosion or internal collapse, impact craters typically have raised rims and floors that are lower in elevation than the surrounding terrain. Lunar impact craters range from microscopic craters on lunar rocks returned by the Apollo Program and small, simple, bowl-shaped depressions in the lunar regolith to large, complex, multi-ringed impact basins. Meteor Crater is a well-known example of a small impact crater on Earth. Impact craters are the dominant geographic features on many solid Solar System objects including the Moon, Mercury, Callisto, Ganymede and most small moons and asteroids. On other planets and moons that experience more active surface geological processes, such as Earth, Venus, Europa, Io and Titan, visible impact craters are less common because they become ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rheasilvia
Rheasilvia is the most prominent surface feature on the asteroid Vesta and is thought to be an impact crater. It is in diameter, which is 90% the diameter of Vesta itself, and is 95% the mean diameter of Vesta, . However, the mean is affected by the crater itself. It is 89% the mean equatorial diameter of , making it one of the largest craters in the Solar System, and at 75°S latitude, covers most of the southern hemisphere. The peak in the center of the crater is in diameter, and rises from its base, making it one of the tallest mountains known in the Solar System. Discovery Rheasilvia was discovered in Hubble Space Telescope images in 1997, but was not named until the arrival of the ''Dawn'' spacecraft in 2011. It is named after Rhea Silvia, a mythological vestal virgin and mother of the founders of Rome, Romulus and Remus.(NASA coordinates) Characteristics The crater partially obscures an earlier crater, named Veneneia, that at is almost as large. Rheasilvia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

4 Vesta
Vesta (minor-planet designation: 4 Vesta) is one of the largest objects in the asteroid belt, with a mean diameter of . It was discovered by the German astronomer Heinrich Wilhelm Matthias Olbers on 29 March 1807 and is named after Vesta, the virgin goddess of home and hearth from Roman mythology. Vesta is thought to be the second-largest asteroid, both by mass and by volume, after the dwarf planet Ceres, though in volume it overlaps with the uncertainty in the measurements of 2 Pallas.Marsset, M., Brož, M., Vernazza, P. et al. The violent collisional history of aqueously evolved (2) Pallas. Nat Astron 4, 569–576 (2020). https://doi.org/10.1038/s41550-019-1007-5 Measurements give it a nominal volume only slightly larger than that of Pallas (about 5% greater, which is the magnitude of the uncertainties in measurement), but it is 25% to 30% more massive. It constitutes an estimated 9% of the mass of the asteroid belt. Vesta is the only known remaining rocky protoplanet (with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

HED Meteorite
HED meteorites are a clan (subgroup) of achondrite meteorites. HED stands for "howardite– eucrite–diogenite". These achondrites came from a differentiated parent body and experienced extensive igneous processing not much different from the magmatic rocks found on Earth and for this reason they closely resemble terrestrial igneous rocks. Classification HED meteorites are broadly divided into: * Howardites * Eucrites * Diogenites Several subgroups of both eucrites and diogenites have been found. The HED meteorites account for about 5% of all falls, which is about 60% of all achondrites. Origin No matter their composition all these types of meteorite are thought to have originated in the crust of the asteroid Vesta. According to this theory the differences of composition are due to their ejection at different moments in the geologic history of Vesta. Their crystallization ages have been determined to be between 4.43 and 4.55 billion years from radioisotope ratios. HED meteor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eucrite
Eucrites are achondritic stony meteorites, many of which originate from the surface of the asteroid 4 Vesta and are part of the HED meteorite clan. They are the most common achondrite group with over 100 meteorites found. Eucrites consist of basaltic rock from the crust of 4 Vesta or a similar parent body. They are mostly composed of calcium-poor pyroxene, pigeonite, and calcium-rich plagioclase ( anorthite). Based on differences of chemical composition and features of the component crystals, they are subdivided into several groups: * Non-cumulate eucrites are the most common variety and can be subdivided further: ** Main series eucrites formed near the surface and are mostly regolith breccias lithified under the pressure of overlying newer deposits. ** Stannern trend eucrites are a rare variety. ** Nuevo Laredo trend eucrites are thought to come from deeper layers of 4 Vesta's crust, and are a transition group towards the cumulate eucrites. * Cumulate eucrites are rare typ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Asteroid Family
An asteroid family is a population of asteroids that share similar proper orbital elements, such as semimajor axis, eccentricity, and orbital inclination. The members of the families are thought to be fragments of past asteroid collisions. An asteroid family is a more specific term than asteroid group whose members, while sharing some broad orbital characteristics, may be otherwise unrelated to each other. General properties Large prominent families contain several hundred recognized asteroids (and many more smaller objects which may be either not-yet-analyzed, or not-yet-discovered). Small, compact families may have only about ten identified members. About 33% to 35% of asteroids in the main belt are family members. There are about 20 to 30 reliably recognized families, with several tens of less certain groupings. Most asteroid families are found in the main asteroid belt, although several family-like groups such as the Pallas family, Hungaria family, and the Phocaea fam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]