284 (number)
   HOME
*





284 (number)
280 (two hundred ndeighty) is the natural number after 279 and before 281. In mathematics The denominator of the eighth harmonic number, 280 is an octagonal number. 280 is the smallest octagonal number that is a half of another octagonal number. There are 280 plane trees with ten nodes. As a consequence of this, 18 people around a round table can shake hands with each other in non-crossing ways, in 280 different ways (this includes rotations). In geography *List of highways numbered 280 See also the year 280. Integers from 281 to 289 281 282 282 = 2·3·47, sphenic number, number of planar partitions of 9 283 283 prime, twin prime with 281, strictly non-palindromic number, 4283 - 3283 is prime 284 284 and 220 form the first pair of amicable numbers, as the divisors of 284 add up to 220 and vice versa. 285 285 = 3·5·19, sphenic number, square pyramidal number, Harshad number, repdigit in base 7 (555), vertically symmetric number , also in ''Star Trek'', the total n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Pyramidal Number
In mathematics, a pyramid number, or square pyramidal number, is a natural number that counts the number of stacked spheres in a pyramid with a square base. The study of these numbers goes back to Archimedes and Fibonacci. They are part of a broader topic of figurate numbers representing the numbers of points forming regular patterns within different shapes. As well as counting spheres in a pyramid, these numbers can be described algebraically as a sum of the first n positive square numbers, or as the values of a cubic polynomial. They can be used to solve several other counting problems, including counting squares in a square grid and counting acute triangles formed from the vertices of an odd regular polygon. They equal the sums of consecutive tetrahedral numbers, and are one-fourth of a larger tetrahedral number. The sum of two consecutive square pyramidal numbers is an octahedral number. History The pyramidal numbers were one of the few types of three-dimensional figurate num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Centered Octagonal Number
A centered octagonal number is a centered figurate number that represents an octagon with a dot in the center and all other dots surrounding the center dot in successive octagonal layers.. The centered octagonal numbers are the same as the odd square numbers. Thus, the ''n''th odd square number and ''t''th centered octagonal number is given by the formula :O_n=(2n-1)^2 = 4n^2-4n+1 , (2t+1)^2=4t^2+4t+1. The first few centered octagonal numbers are : 1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225 Calculating Ramanujan's tau function on a centered octagonal number yields an odd number, whereas for any other number the function yields an even number. O_n is the number of 2x2 matrices with elements from 0 to n that their determinant is twice their permanent. See also * Octagonal number An octagonal number is a figurate number that represents an octagon. The octagonal number for ''n'' is given by the formula 3''n''2 - 2''n'', with ''n' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentagonal Number
A pentagonal number is a figurate number that extends the concept of triangular and square numbers to the pentagon, but, unlike the first two, the patterns involved in the construction of pentagonal numbers are not rotationally symmetrical. The ''n''th pentagonal number ''pn'' is the number of ''distinct'' dots in a pattern of dots consisting of the ''outlines'' of regular pentagons with sides up to n dots, when the pentagons are overlaid so that they share one vertex. For instance, the third one is formed from outlines comprising 1, 5 and 10 dots, but the 1, and 3 of the 5, coincide with 3 of the 10 – leaving 12 distinct dots, 10 in the form of a pentagon, and 2 inside. ''p''n is given by the formula: :p_n = =\binom+3\binom for ''n'' ≥ 1. The first few pentagonal numbers are: 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, 651, 715, 782, 852, 925, 1001, 1080, 1162, 1247, 1335, 1426, 1520, 1617, 1717, 1820, 1926, 20 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudoprime
A pseudoprime is a probable prime (an integer that shares a property common to all prime numbers) that is not actually prime. Pseudoprimes are classified according to which property of primes they satisfy. Some sources use the term pseudoprime to describe all probable primes, both composite numbers and actual primes. Pseudoprimes are of primary importance in public-key cryptography, which makes use of the difficulty of factoring large numbers into their prime factors. Carl Pomerance estimated in 1988 that it would cost $10 million to factor a number with 144 digits, and $100 billion to factor a 200-digit number (the cost today is dramatically lower but still prohibitively high). But finding two large prime numbers as needed for this use is also expensive, so various probabilistic primality tests are used, some of which in rare cases inappropriately deliver composite numbers instead of primes. On the other hand, deterministic primality tests, such as the AKS primality test, do not g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intel 80286
The Intel 80286 (also marketed as the iAPX 286 and often called Intel 286) is a 16-bit microprocessor that was introduced on February 1, 1982. It was the first 8086-based CPU with separate, non-multiplexed address and data buses and also the first with memory management and wide protection abilities. The 80286 used approximately 134,000 transistors in its original nMOS (HMOS) incarnation and, just like the contemporary 80186, it could correctly execute most software written for the earlier Intel 8086 and 8088 processors. The 80286 was employed for the IBM PC/AT, introduced in 1984, and then widely used in most PC/AT compatible computers until the early 1990s. In 1987, Intel shipped its five-millionth 80286 microprocessor. History and performance Intel's first 80286 chips were specified for a maximum clockrate of 5, 6 or 8 MHz and later releases for 12.5 MHz. AMD and Harris later produced 16 MHz, 20 MHz and 25 MHz parts, respectively. Intersil and Fuj ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nontotient
In number theory, a nontotient is a positive integer ''n'' which is not a totient number: it is not in the range of Euler's totient function φ, that is, the equation φ(''x'') = ''n'' has no solution ''x''. In other words, ''n'' is a nontotient if there is no integer ''x'' that has exactly ''n'' coprimes below it. All odd numbers are nontotients, except 1, since it has the solutions ''x'' = 1 and ''x'' = 2. The first few even nontotients are : 14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, 98, 114, 118, 122, 124, 134, 142, 146, 152, 154, 158, 170, 174, 182, 186, 188, 194, 202, 206, 214, 218, 230, 234, 236, 242, 244, 246, 248, 254, 258, 266, 274, 278, 284, 286, 290, 298, ... Least ''k'' such that the totient of ''k'' is ''n'' are (0 if no such ''k'' exists) :1, 3, 0, 5, 0, 7, 0, 15, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 25, 0, 23, 0, 35, 0, 0, 0, 29, 0, 31, 0, 51, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 69, 0, 47, 0, 65, 0, 0, 0, 53, 0, 81, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetrahedral Number
A tetrahedral number, or triangular pyramidal number, is a figurate number that represents a pyramid with a triangular base and three sides, called a tetrahedron. The th tetrahedral number, , is the sum of the first triangular numbers, that is, : Te_n = \sum_^n T_k = \sum_^n \frac = \sum_^n \left(\sum_^k i\right) The tetrahedral numbers are: : 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... Formula The formula for the th tetrahedral number is represented by the 3rd rising factorial of divided by the factorial of 3: :Te_n= \sum_^n T_k = \sum_^n \frac = \sum_^n \left(\sum_^k i\right)=\frac = \frac The tetrahedral numbers can also be represented as binomial coefficients: :Te_n=\binom. Tetrahedral numbers can therefore be found in the fourth position either from left or right in Pascal's triangle. Proofs of formula This proof uses the fact that the th triangular number is given by :T_n=\frac. It proceeds by induction. ;Base case :Te_1 = 1 = \frac. ;Inductive step :\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rules Of Acquisition
In the fictional '' Star Trek'' universe, the Rules of Acquisition are a collection of sacred business proverbs of the ultra-capitalist race known as the Ferengi. The first mention of rules in the ''Star Trek'' universe was in " The Nagus", an episode of the TV series '' Star Trek: Deep Space Nine'' (Season 1, Episode 10). In a later ''Deep Space Nine'' episode, " The Maquis: Part 1", Sakonna (a Vulcan) asks Quark (a Ferengi) to explain what a Rule of Acquisition is. He states, "Every Ferengi business transaction is governed by 285 Rules of Acquisition to ensure a fair and honest deal for all parties concerned... well most of them anyway." Background The first Rule was made by Gint, the first Grand Nagus of the Ferengi Alliance, a role with political, economic, and even quasi-religious duties. The Rules were said to be divinely inspired and sacred (thus furthering the original marketing ploy.) Although it has been stated within ''Star Trek'' that there are 285 Rules, not a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Star Trek
''Star Trek'' is an American science fiction media franchise created by Gene Roddenberry, which began with the eponymous 1960s television series and quickly became a worldwide pop-culture phenomenon. The franchise has expanded into various films, television series, video games, novels, and comic books. With an estimated $10.6 billion in revenue, it is one of the most recognizable and highest-grossing media franchises of all time. The franchise began with ''Star Trek: The Original Series'', which debuted in the US on September 8, 1966 and aired for three seasons on NBC. It was first broadcast on September 6, 1966 on Canada's CTV network. It followed the voyages of the crew of the starship USS ''Enterprise'', a space exploration vessel built by the United Federation of Planets in the 23rd century, on a mission "to explore strange new worlds, to seek out new life and new civilizations, to boldly go where no man has gone before". In creating ''Star Trek'', Roddenberry w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Repdigit
In recreational mathematics, a repdigit or sometimes monodigit is a natural number composed of repeated instances of the same digit in a positional number system (often implicitly decimal). The word is a portmanteau of repeated and digit. Examples are 11, 666, 4444, and 999999. All repdigits are palindromic numbers and are multiples of repunits. Other well-known repdigits include the repunit primes and in particular the Mersenne primes (which are repdigits when represented in binary). Repdigits are the representation in base B of the number x\frac where 0 1 and ''n'', ''m'' > 2 : **(''p'', ''x'', ''y'', ''m'', ''n'') = (31, 5, 2, 3, 5) corresponding to 31 = 111112 = 1115, and, **(''p'', ''x'', ''y'', ''m'', ''n'') = (8191, 90, 2, 3, 13) corresponding to 8191 = 11111111111112 = 11190, with 11111111111 is the repunit with thirteen digits 1. *For each sequence of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Amicable Number
Amicable numbers are two different natural numbers related in such a way that the sum of the proper divisors of each is equal to the other number. That is, σ(''a'')=''b'' and σ(''b'')=''a'', where σ(''n'') is equal to the sum of positive divisors of ''n'' (see also divisor function). The smallest pair of amicable numbers is (220, 284). They are amicable because the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110, of which the sum is 284; and the proper divisors of 284 are 1, 2, 4, 71 and 142, of which the sum is 220. (A proper divisor of a number is a positive factor of that number other than the number itself. For example, the proper divisors of 6 are 1, 2, and 3.) The first ten amicable pairs are: (220, 284), (1184, 1210), (2620, 2924), (5020, 5564), (6232, 6368), (10744, 10856), (12285, 14595), (17296, 18416), (63020, 76084), and (66928, 66992). . (Also see and ) It is unknown if there are infinitely many pairs of amicable numbers. A pair of amic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]