20α-hydroxysteroid Dehydrogenase
   HOME
*





20α-hydroxysteroid Dehydrogenase
In enzymology, a 20-α-hydroxysteroid dehydrogenase () is an enzyme that catalyzes the chemical reaction :17alpha,20alpha-dihydroxypregn-4-en-3-one + NAD(P)+ \rightleftharpoons 17alpha-hydroxyprogesterone + NAD(P)H + H+ The 3 substrates of this enzyme are 17alpha,20alpha-dihydroxypregn-4-en-3-one, NAD+, and NADP+, whereas its 4 products are 17-alpha-hydroxyprogesterone, NADH, NADPH, and H+. This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-OH group of donor with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is 20alpha-hydroxysteroid:NAD(P)+ 20-oxidoreductase. Other names in common use include 20alpha-hydroxy steroid dehydrogenase, 20alpha-hydroxy steroid dehydrogenase, 20alpha-HSD, and 20alpha-HSDH. This enzyme participates in c21-steroid hormone metabolism. 20alpha-HSD has been initially described as a progesterone metabolizing enzyme of the ovary. On a functional level, ovarian 20alpha-HSD is actively invo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Enzymology
Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called ''enzymology'' and the field of pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties. Enzymes are known to catalyze more than 5,000 biochemical reaction types. Other biocatalysts are catalytic RNA molecules, called ribozymes. Enzymes' specificity comes from their unique three-dimensional structures. Like all catalysts, enzymes increase the reaction ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE