1987A
   HOME
*



picture info

1987A
SN 1987A was a type II supernova in the Large Magellanic Cloud, a dwarf satellite galaxy of the Milky Way. It occurred approximately from Earth and was the closest observed supernova since Kepler's Supernova. 1987A's light reached Earth on February 23, 1987, and as the earliest supernova discovered that year, was labeled "1987A". Its brightness peaked in May, with an apparent magnitude of about 3. It was the first supernova that modern astronomers were able to study in great detail, and its observations have provided much insight into core-collapse supernovae. SN 1987A provided the first opportunity to confirm by direct observation the radioactive source of the energy for visible light emissions, by detecting predicted gamma-ray line radiation from two of its abundant radioactive nuclei. This proved the radioactive nature of the long-duration post-explosion glow of supernovae. For over thirty years, the expected collapsed neutron star could not be found, but in 2019, in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Core-collapse Supernova
A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the ''progenitor'', either collapses to a neutron star or black hole, or is completely destroyed. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months. Supernovae are more energetic than novae. In Latin, ''nova'' means "new", referring astronomically to what appears to be a temporary new bright star. Adding the prefix "super-" distinguishes supernovae from ordinary novae, which are far less luminous. The word ''supernova'' was coined by Walter Baade and Fritz Zwicky in 1929. The last supernova to be directly observed in the Milky Way was Kepler's Supernova in 1604, appearing not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Type II Supernova
A Type II supernova (plural: ''supernovae'' or ''supernovas'') results from the rapid collapse and violent explosion of a massive star. A star must have at least 8 times, but no more than 40 to 50 times, the mass of the Sun () to undergo this type of explosion. Type II supernovae are distinguished from other types of supernovae by the presence of hydrogen in their spectra. They are usually observed in the spiral arms of galaxies and in H II regions, but not in elliptical galaxies; those are generally composed of older, low-mass stars, with few of the young, very massive stars necessary to cause a supernova. Stars generate energy by the nuclear fusion of elements. Unlike the Sun, massive stars possess the mass needed to fuse elements that have an atomic mass greater than hydrogen and helium, albeit at increasingly higher temperatures and pressures, causing correspondingly shorter stellar life spans. The degeneracy pressure of electrons and the energy generated by th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Type II Supernova
A Type II supernova (plural: ''supernovae'' or ''supernovas'') results from the rapid collapse and violent explosion of a massive star. A star must have at least 8 times, but no more than 40 to 50 times, the mass of the Sun () to undergo this type of explosion. Type II supernovae are distinguished from other types of supernovae by the presence of hydrogen in their spectra. They are usually observed in the spiral arms of galaxies and in H II regions, but not in elliptical galaxies; those are generally composed of older, low-mass stars, with few of the young, very massive stars necessary to cause a supernova. Stars generate energy by the nuclear fusion of elements. Unlike the Sun, massive stars possess the mass needed to fuse elements that have an atomic mass greater than hydrogen and helium, albeit at increasingly higher temperatures and pressures, causing correspondingly shorter stellar life spans. The degeneracy pressure of electrons and the energy generated by th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Las Campanas Observatory
Las Campanas Observatory (LCO) is an astronomical observatory owned and operated by the Carnegie Institution for Science (CIS). It is in the southern Atacama Desert of Chile in the Atacama Region approximately northeast of the city of La Serena. The LCO telescopes and other facilities are near the north end of a long mountain ridge. Cerro Las Campanas, near the southern end and over high, is the future home of the Giant Magellan Telescope. LCO was established in 1969 and is the primary observing facility of CIS. It supplanted Mount Wilson Observatory in that role due to increasing light pollution in the Los Angeles area. The headquarters of Carnegie Observatories is located in Pasadena, California, while the main office in Chile is in La Serena next to the University of La Serena and a short distance from the Association of Universities for Research in Astronomy facility. It is served by Pelicano Airport, to the southwest. Telescopes * The Magellan Telescopes are two i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ian Shelton
Ian Keith Shelton (born 30 March 1957) is a Canadian astronomer who discovered SN 1987A, the first modern supernova close and bright enough to be visible to the naked eye. Born in Winnipeg, Manitoba, Canada, Shelton received his B.Sc. in 1979 from the University of Manitoba and in 1981 began his professional career working as Resident Astronomer at the University of Toronto Southern Observatory at Las Campanas, Chile. Discovery of Supernova 1987A On 1987 February 24, at 02:40, Shelton, while working in Chile at Las Campanas Observatory for the University of Toronto, discovered a previously undetected bright light on a photograph of the Large Magellanic Cloud. Initially skeptical, Shelton went outside to look with the naked eye, and saw that the bright light was indeed present. His discovery turned out to be a supernova, the first visible to the naked eye since Johannes Kepler observed SN 1604 nearly 383 years prior. Other astronomers around the world also soon noticed the bright ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sanduleak -69 202
Sanduleak -69 202 (''Sk -69 202'', also known as '' GSC 09162-00821'') was a magnitude 12 blue supergiant star, located on the outskirts of the Tarantula Nebula in the Large Magellanic Cloud. It is notable as the progenitor of supernova 1987A. The star was originally charted by the Romanian-American astronomer Nicholas Sanduleak in 1970, but remained just a number in a catalogue until identified as the star that exploded in the first naked eye supernova since the invention of the telescope, when its maximum reached visual magnitude +2.8. The discovery that a blue supergiant was a supernova progenitor contradicted all known theories at the time and produced a flurry of new ideas about how such a thing might happen, but it is now accepted that blue supergiants are a normal progenitor for some supernovae. The candidate luminous blue variable HD 168625 HD 168625 (V4030 Sagittarii) is a blue hypergiant star and candidate luminous blue variable located in the co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tarantula Nebula
The Tarantula Nebula (also known as 30 Doradus) is a large H II region in the Large Magellanic Cloud (LMC), forming its south-east corner (from Earth's perspective). Discovery The Tarantula Nebula was observed by Nicolas-Louis de Lacaille during an expedition to the Cape of Good Hope between 1751 and 1753. He catalogued it as the second of the "Nebulae of the First Class", "Nebulosities not accompanied by any star visible in the telescope of two feet". It was described as a diffuse nebula 20' across. Johann Bode included the Tarantula in his 1801 ''Uranographia'' star atlas and listed it in the accompanying ''Allgemeine Beschreibung und Nachweisung der Gestirne'' catalogue as number 30 in the constellation "Xiphias or Dorado". Instead of being given a stellar magnitude, it was noted to be nebulous. The name Tarantula Nebula arose in the mid 20th century from its appearance in deep photographic exposures. 30 Doradus has often been treated as the designation of a star, or of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dorado
Dorado () is a constellation in the southern sky. It was named in the late 16th century and is now one of the 88 modern constellations. Its name refers to the dolphinfish (''Coryphaena hippurus''), which is known as ''dorado'' in Spanish, although it has also been depicted as a swordfish. Dorado contains most of the Large Magellanic Cloud, the remainder being in the constellation Mensa. The South Ecliptic pole also lies within this constellation. Even though the name Dorado is not Latin but Spanish, astronomers give it the Latin genitive form ''Doradus'' when naming its stars; it is treated (like the adjacent asterism Argo Navis) as a feminine proper name of Greek origin ending in -ō (like ''Io'' or ''Callisto'' or ''Argo''), which have a genitive ending ''-ūs''. History Dorado was one of twelve constellations named by Petrus Plancius from the observations of Pieter Dirkszoon Keyser and Frederick de Houtman. It appeared: * On a celestial globe published in 1597 (or 1598) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Large Magellanic Cloud
The Large Magellanic Cloud (LMC), or Nubecula Major, is a satellite galaxy of the Milky Way. At a distance of around 50 kiloparsecs (≈160,000  light-years), the LMC is the second- or third-closest galaxy to the Milky Way, after the Sagittarius Dwarf Spheroidal (16 kpc) and the possible dwarf irregular galaxy known as the Canis Major Overdensity. Based on the D25 isophote at the B-band (445 nm wavelength of light), the Large Magellanic Cloud is approximately across. It is roughly a hundredth as massive as the Milky WayMagellanic Cloud
. ''''. 2009. Encyclopædia Britannica Online. 30 Aug. 2009.
and is the fourth-largest g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Astron (spacecraft)
Astron was a Soviet space telescope launched on 23 March 1983 at 12:45:06 UTC, using the Proton launcher. Based on the 4MV spacecraft design and operational for six years, Astron was the largest ultraviolet space telescope of its time. The project was headed by Alexandr Boyarchuk. The spacecraft was designed and constructed by the Crimean Astrophysical Observatory and NPO Lavochkin. A group of scientists from these institutions was awarded the USSR State Prize for their work. The payload consisted of an 80 cm ultraviolet telescope, which was jointly designed by the USSR and France, and an X-ray spectroscope. It could take UV spectra 150-350 nm. Placed into an orbit with an apogee of , Astron was capable of making observations outside the Earth's umbra and radiation belt. Among the most important observations made by Astron were those of SN 1987A supernova from March 4 to March 12, 1987, and of Halley's Comet in December 1985, the latter of which enabled a group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kepler's Supernova
SN 1604, also known as Kepler's Supernova, Kepler's Nova or Kepler's Star, was a Type Ia supernova that occurred in the Milky Way, in the constellation Ophiuchus. Appearing in 1604, it is the most recent supernova in the Milky Way galaxy to have been unquestionably observed by the naked eye, occurring no farther than 6 kiloparsecs (20,000 light-years) from Earth. Before the adoption of the current naming system for supernovae, it was named for Johannes Kepler, the German astronomer who described it in ''De Stella Nova''. Observation Visible to the naked eye, Kepler's Star was brighter at its peak than any other star in the night sky, with an apparent magnitude of −2.5. It was visible during the day for over three weeks. Records of its sighting exist in European, Chinese, Korean, and Arabic sources. It was the second supernova to be observed in a generation (after SN 1572 seen by Tycho Brahe in Cassiopeia). No further supernovae have since been observed with certainty in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Apparent Magnitude
Apparent magnitude () is a measure of the brightness of a star or other astronomical object observed from Earth. An object's apparent magnitude depends on its intrinsic luminosity, its distance from Earth, and any extinction of the object's light caused by interstellar dust along the line of sight to the observer. The word ''magnitude'' in astronomy, unless stated otherwise, usually refers to a celestial object's apparent magnitude. The magnitude scale dates back to the ancient Roman astronomer Claudius Ptolemy, whose star catalog listed stars from 1st magnitude (brightest) to 6th magnitude (dimmest). The modern scale was mathematically defined in a way to closely match this historical system. The scale is reverse logarithmic: the brighter an object is, the lower its magnitude number. A difference of 1.0 in magnitude corresponds to a brightness ratio of \sqrt /math>, or about 2.512. For example, a star of magnitude 2.0 is 2.512 times as bright as a star of magnitude 3.0, 6. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]