188 (number)
   HOME
*





188 (number)
188 (one hundred ndeighty-eight) is the natural number following 187 and preceding 189. In mathematics There are 188 different four-element semigroups, and 188 ways a chess queen can move from one corner of a 4\times 4 board to the opposite corner by a path that always moves closer to its goal. The sides and diagonals of a regular dodecagon form 188 equilateral triangles. In other fields The number 188 figures prominently in the film ''The Parallel Street'' (1962) by German experimental film director . The opening frame of the film is just an image of this number. See also * The year AD 188 or 188 BC * List of highways numbered 188 The following highways are numbered 188: India * State Highway 188 (Andhra Pradesh) Japan * Japan National Route 188 United States * Alabama State Route 188 * Arizona State Route 188 * California State Route 188 * Connecticut Route 188 * Flori ... * References {{DEFAULTSORT:188 (Number) Integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


187 (number)
187 (one hundred ndeighty-seven) is the natural number following 186 and preceding 188. In mathematics There are 187 ways of forming a sum of positive integers that adds to 11, counting two sums as equivalent when they are cyclic permutations of each other. There are also 187 unordered triples of 5-bit binary numbers whose bitwise exclusive or is zero. Per Miller's rules, the triakis tetrahedron produces 187 distinct stellations. It is the smallest Catalan solid, dual to the truncated tetrahedron, which only has 9 distinct stellations. In other fields There are 187 chapters in the Hebrew Torah The Torah (; hbo, ''Tōrā'', "Instruction", "Teaching" or "Law") is the compilation of the first five books of the Hebrew Bible, namely the books of Genesis, Exodus, Leviticus, Numbers and Deuteronomy. In that sense, Torah means the s .... See also * 187 (other) References {{DEFAULTSORT:187 (Number) Integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


189 (number)
189 (one hundred ndeighty-nine) is the natural number following 188 and preceding 190. In mathematics 189 is a centered cube number and a heptagonal number. The centered cube numbers are the sums of two consecutive cubes, and 189 can be written as sum of two cubes in two ways: and The smallest number that can be written as the sum of two positive cubes in two ways is 1729. There are 189 zeros among the decimal digits of the positive integers with at most three digits. The largest prime number that can be represented in 256-bit arithmetic is the "ultra-useful prime" used in quasi-Monte Carlo methods and in some cryptographic Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or '' -logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adve ... systems. See Appendix B. See also * The year AD 189 or 189 BC * List of highways numbered 189 * R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. The closure axiom is implied by the definition of a binary operation on a set. Some authors thus omit it and specify three axioms for a group and only one axiom (associativity) for a semigroup. As in the case of groups or magmas, the semigroup operation need not be commutative, so ''x''·''y'' is not necessarily equal to ''y''·''x''; a well-known example of an operation that is as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chess Queen
The queen (♕, ♛) is the most powerful piece in the game of chess. It can move any number of squares vertically, horizontally or , combining the powers of the rook and bishop. Each player starts the game with one queen, placed in the middle of the first next to the king. Because the queen is the strongest piece, a pawn is promoted to a queen in the vast majority of cases. The predecessor to the queen is the ''ferz'', a weak piece only able to move or capture one step diagonally, originating from the Persian game of shatranj. The modern queen gained its power and its modern move in Spain in the 15th century during Isabella I's reign, perhaps inspired by her great political power. Placement and movement The white queen starts on d1, while the black queen starts on d8. With the chessboard oriented correctly, the white queen starts on a white square and the black queen starts on a black square—thus the mnemonics "queen gets her color", "queen on er wncolor", or "the dr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regular Dodecagon
In geometry, a dodecagon or 12-gon is any twelve-sided polygon. Regular dodecagon A regular dodecagon is a figure with sides of the same length and internal angles of the same size. It has twelve lines of reflective symmetry and rotational symmetry of order 12. A regular dodecagon is represented by the Schläfli symbol and can be constructed as a truncated hexagon, t, or a twice-truncated triangle, tt. The internal angle at each vertex of a regular dodecagon is 150°. Area The area of a regular dodecagon of side length ''a'' is given by: :\begin A & = 3 \cot\left(\frac \right) a^2 = 3 \left(2+\sqrt \right) a^2 \\ & \simeq 11.19615242\,a^2 \end And in terms of the apothem ''r'' (see also inscribed figure), the area is: :\begin A & = 12 \tan\left(\frac\right) r^2 = 12 \left(2-\sqrt \right) r^2 \\ & \simeq 3.2153903\,r^2 \end In terms of the circumradius ''R'', the area is: :A = 6 \sin\left(\frac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equilateral Triangle
In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle. Principal properties Denoting the common length of the sides of the equilateral triangle as a, we can determine using the Pythagorean theorem that: *The area is A=\frac a^2, *The perimeter is p=3a\,\! *The radius of the circumscribed circle is R = \frac *The radius of the inscribed circle is r=\frac a or r=\frac *The geometric center of the triangle is the center of the circumscribed and inscribed circles *The altitude (height) from any side is h=\frac a Denoting the radius of the circumscribed circle as ''R'', we can determine using trigonometry that: *The area of the triangle is \mathrm=\fracR^2 Many of these quantities have simple r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Experimental Film
Experimental film or avant-garde cinema is a mode of filmmaking that rigorously re-evaluates cinematic conventions and explores non-narrative forms or alternatives to traditional narratives or methods of working. Many experimental films, particularly early ones, relate to arts in other disciplines: painting, dance, literature and poetry, or arise from research and development of new technical resources. While some experimental films have been distributed through mainstream channels or even made within commercial studios, the vast majority have been produced on very low budgets with a minimal crew or a single person and are either self-financed or supported through small grants. Experimental filmmakers generally begin as amateurs, and some use experimental films as a springboard into commercial film-making or transition into academic positions. The aim of experimental filmmaking may be to render the personal vision of an artist, or to promote interest in new technology rather t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


188 BC
__NOTOC__ Year 188 BC was a year of the pre-Julian Roman calendar. At the time it was known as the Year of the Consulship of Messalla and Salinator (or, less frequently, year 566 '' Ab urbe condita''). The denomination 188 BC for this year has been used since the early medieval period, when the Anno Domini calendar era became the prevalent method in Europe for naming years. Events By place Greece * The leader of the Achaean League, Philopoemen, enters northern Laconia with his army and a group of Spartan exiles. His army demolishes the wall that the former tyrant of Sparta, Nabis, has built around Sparta. Philopoemen then restores Spartan citizenship to the exiles and abolishes Spartan law, introducing Achaean law in its place. Sparta's role as a major power in Greece ends, while the Achaean League becomes the dominant power throughout the Peloponnese. Roman Republic * The continuing quarrels among the Greek cities and leagues increases the conviction in Rome that th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Highways Numbered 188
The following highways are numbered 188: India *State Highway 188 (Andhra Pradesh) Japan * Japan National Route 188 United States * Alabama State Route 188 * Arizona State Route 188 * California State Route 188 * Connecticut Route 188 * Florida State Road 188 * Georgia State Route 188 * Iowa Highway 188 * K-188 (Kansas highway) * Kentucky Route 188 * Maine State Route 188 * Maryland Route 188 * M-188 (Michigan highway) * New Mexico State Road 188 * New York State Route 188 (former) * Ohio State Route 188 * Pennsylvania Route 188 * South Carolina Highway 188 * Tennessee State Route 188 * Texas State Highway 188 State Highway 188 (SH 188) is a state highway in the Coastal Bend region of Texas. It runs from Mathis east to Aransas Bay between Rockport and Port Aransas Port Aransas ( ) is a city in Nueces County, Texas, United States. This c ... ** Texas State Highway Spur 188 ** Farm to Market Road 188 (Texas) ** Urban Road 188 (Texas, signed as Farm to Mar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]