1737 Severny
   HOME
*





1737 Severny
1737 Severny, provisional designation , is a stony Eoan asteroid from the outer region of the asteroid belt, approximately 21 kilometers in diameter. It was discovered on 13 October 1966, by Russian astronomer Lyudmila Chernykh at the Crimean Astrophysical Observatory in Nauchnyj, on the Crimean peninsula, who named after Soviet astronomer Andrei Severny. Classification and orbit ''Severny'' is a member of the Eos family. It orbits the Sun in the outer main-belt at a distance of 2.9–3.2  AU once every 5 years and 3 months (1,908 days). Its orbit has an eccentricity of 0.05 and an inclination of 9 ° with respect to the ecliptic. First identified as at Turku, the asteroid's first used observation was made at Heidelberg Observatory in 1950, extending ''Severny''s observation arc by 16 years prior to its official discovery observation. Physical characteristics ''Severny'' has been characterized as a common stony S-type asteroid. Lightcurves A rotational lightcurv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lyudmila Chernykh
Lyudmila Ivanovna Chernykh (russian: Людми́ла Ива́новна Черны́х, June 13, 1935 in Shuya, Ivanovo Oblast, Shuya, Ivanovo Oblast – July 28, 2017) was a Russian-born Soviet Union, Soviet astronomer, wife and colleague of Nikolai Stepanovich Chernykh, and a prolific discoverer of minor planets. Professional career In 1959 she graduated from Pedagogical Institute of Irkutsk State University, Irkutsk State Pedagogical Institute (now Pedagogical Institute of Irkutsk State University). Between 1959 and 1963 she worked in the Time and Frequency Laboratory of the All-Union Research Institute of Physico-Technical and Radiotechnical Measurements in Irkutsk, where she did astrometry, astrometrical observations for the Time Service. Between 1964 and 1998 she was a scientific worker at the Institute of Theoretical Astronomy of the USSR Academy of Sciences (Russian Academy of Science since 1991), working at the observation base of the institute at the Crimean Astroph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Iso-Heikkilä Observatory
Iso-Heikkilä Observatory ( fi, Iso-Heikkilän tähtitorni, sv, Storheikkilä observatorium) is an amateur astronomical observatory used by a local amateur astronomical association, Turun Ursa ry in the Iso-Heikkilä district of Turku, Finland. Referred to as Turku Observatory () by the Minor Planet Center, it was previously operated by the University of Turku from 1937 to 1972, and is the observatory where several Finnish discoverers of minor planets made their observations. History The observatory was originally owned by the department of astronomy of the University of Turku. It was built in 1935 and 1936, and technically designed by physics and astronomy professor Yrjö Väisälä. Väisälä's research team discovered a total of 807 minor planets and 7 comets at the observatory. Väisälä also contributed significantly to research in the areas of optics and surveying. As the city expanded and a steel factory was built under a kilometer away from the observatory, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Astronomical Albedo
Albedo (; ) is the measure of the diffuse reflection of solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body that reflects all incident radiation. Surface albedo is defined as the ratio of radiosity ''J''e to the irradiance ''E''e (flux per unit area) received by a surface. The proportion reflected is not only determined by properties of the surface itself, but also by the spectral and angular distribution of solar radiation reaching the Earth's surface. These factors vary with atmospheric composition, geographic location, and time (see position of the Sun). While bi-hemispherical reflectance is calculated for a single angle of incidence (i.e., for a given position of the Sun), albedo is the directional integration of reflectance over all solar angles in a given period. The temporal resolution may range from seconds (as obtained from flux measurements) to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

NEOWISE
Wide-field Infrared Survey Explorer (WISE, observatory code C51, Explorer 92 and SMEX-6) is a NASA infrared astronomy space telescope in the Explorers Program. It was launched in December 2009, and placed in hibernation mode in February 2011, before being re-activated in 2013 and renamed the Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE). WISE discovered thousands of minor planets and numerous star clusters. Its observations also supported the discovery of the first Y-type brown dwarf and Earth trojan asteroid. WISE performed an all-sky astronomical survey with images in 3.4, 4.6, 12 and 22 μm wavelength range bands, over ten months using a diameter infrared telescope in Earth orbit. After its solid hydrogen coolant depleted, a four-month mission extension called NEOWISE was conducted to search for near-Earth objects (NEO) such as comets and asteroids using its remaining capability. The WISE All-Sky (WISEA) data, including processed images, source cata ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wide-field Infrared Survey Explorer
Wide-field Infrared Survey Explorer (WISE, observatory code C51, Explorer 92 and SMEX-6) is a NASA infrared astronomy space telescope in the Explorers Program. It was launched in December 2009, and placed in hibernation mode in February 2011, before being re-activated in 2013 and renamed the Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE). WISE discovered thousands of minor planets and numerous star clusters. Its observations also supported the discovery of the first Y-type brown dwarf and Earth trojan asteroid. WISE performed an all-sky astronomical survey with images in 3.4, 4.6, 12 and 22 μm wavelength range bands, over ten months using a diameter infrared telescope in Earth orbit. After its solid hydrogen coolant depleted, a four-month mission extension called NEOWISE was conducted to search for near-Earth objects (NEO) such as comets and asteroids using its remaining capability. The WISE All-Sky (WISEA) data, including processed images, source cat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Akari (satellite)
Akari (ASTRO-F) was an infrared astronomy satellite developed by Japan Aerospace Exploration Agency, in cooperation with institutes of Europe and Korea. It was launched on 21 February 2006, at 21:28 UTC (06:28, 22 February JST) by M-V rocket into Earth sun-synchronous orbit. After its launch it was named ''Akari'' (明かり), which means ''light'' in Japanese. Earlier on, the project was known as IRIS (InfraRed Imaging Surveyor). Its primary mission was to survey the entire sky in near-, mid- and far-infrared, through its aperture telescope. Technical design Its designed lifespan, of far- and mid-infrared sensors, was 550 days, limited by its liquid helium coolant. Its telescope mirror was made of silicon carbide to save weight. The budget for the satellite was ¥13,4 billion (~). History By mid-August 2006, Akari finished around 50 percent of the all sky survey. By early November 2006, first (phase-1) all-sky survey finished. Second (phase-2) all-sky survey started ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

IRAS
The Infrared Astronomical Satellite (Dutch: ''Infrarood Astronomische Satelliet'') (IRAS) was the first space telescope to perform a survey of the entire night sky at infrared wavelengths. Launched on 25 January 1983, its mission lasted ten months. The telescope was a joint project of the United States (NASA), the Netherlands ( NIVR), and the United Kingdom ( SERC). Over 250,000 infrared sources were observed at 12, 25, 60, and 100 micrometer wavelengths. Support for the processing and analysis of data from IRAS was contributed from the Infrared Processing and Analysis Center at the California Institute of Technology. Currently, the Infrared Science Archive at IPAC holds the IRAS archive. The success of IRAS led to interest in the 1985 Infrared Telescope (IRT) mission on the Space Shuttle, and the planned Shuttle Infrared Telescope Facility which eventually transformed into the Space Infrared Telescope Facility, SIRTF, which in turn was developed into the Spitzer Space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Palomar Transient Factory
The Palomar Transient Factory (PTF, obs. code: I41), was an astronomical survey using a wide-field survey camera designed to search for optical transient and variable sources such as variable stars, supernovae, asteroids and comets. The project completed commissioning in summer 2009, and continued until December 2012. It has since been succeeded by the Intermediate Palomar Transient Factory (iPTF), which itself transitioned to the Zwicky Transient Facility in 2017/18. All three surveys are registered at the MPC under the same observatory code for their astrometric observations. Description The fully automated system included an automated realtime data reduction pipeline, a dedicated photometric follow-up telescope, and a full archive of all detected astronomical sources. The survey was performed with a 12K × 8K, 7.8 square degree CCD array camera re-engineered for the 1.2-meter Samuel Oschin Telescope at Palomar Observatory. The survey camera achieved firs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LCDB Quality Code
In astronomy, a light curve is a graph of light intensity of a celestial object or region as a function of time, typically with the magnitude of light received on the y axis and with time on the x axis. The light is usually in a particular frequency interval or band. Light curves can be periodic, as in the case of eclipsing binaries, Cepheid variables, other periodic variables, and transiting extrasolar planets, or aperiodic, like the light curve of a nova, a cataclysmic variable star, a supernova or a microlensing event or binary as observed during occultation events. The study of the light curve, together with other observations, can yield considerable information about the physical process that produces it or constrain the physical theories about it. Variable stars Graphs of the apparent magnitude of a variable star over time are commonly used to visualise and analyse their behaviour. Although the categorisation of variable star types is increasingly done from their spe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnitude (astronomy)
In astronomy, magnitude is a unitless measure of the brightness Brightness is an attribute of visual perception in which a source appears to be radiating or reflecting light. In other words, brightness is the perception elicited by the luminance of a visual target. The perception is not linear to luminance, ... of an astronomical object, object in a defined passband, often in the visible spectrum, visible or infrared spectrum, but sometimes across all wavelengths. An imprecise but systematic determination of the magnitude of objects was introduced in ancient times by Hipparchus. The scale is Logarithmic scale, logarithmic and defined such that a magnitude 1 star is exactly 100 times brighter than a magnitude 6 star. Thus each step of one magnitude is \sqrt[5] \approx 2.512 times brighter than the magnitude 1 higher. The brighter an object appears, the lower the value of its magnitude, with the brightest objects reaching negative values. Astronomers use two different defini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotation Period
The rotation period of a celestial object (e.g., star, gas giant, planet, moon, asteroid) may refer to its sidereal rotation period, i.e. the time that the object takes to complete a single revolution around its axis of rotation relative to the background stars, measured in sidereal time. The other type of commonly used rotation period is the object's synodic rotation period (or ''solar day''), measured in solar time, which may differ by a fraction of a rotation or more than one rotation to accommodate the portion of the object's orbital period during one day. Measuring rotation For solid objects, such as rocky planets and asteroids, the rotation period is a single value. For gaseous or fluid bodies, such as stars and gas giants, the period of rotation varies from the object's equator to its pole due to a phenomenon called differential rotation. Typically, the stated rotation period for a gas giant (such as Jupiter, Saturn, Uranus, Neptune) is its internal rotation period, as d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Laurent Bernasconi
This is a list of minor-planet discoverers credited by the Minor Planet Center with the discovery of one or several minor planets (such as near-Earth and main-belt asteroids, Jupiter trojans and distant objects). , the discovery of 612,011 numbered minor planets are credited to 1141 astronomers and 253 observatories, telescopes or surveys ''(see )''. On how a discovery is made, ''see observations of small Solar System bodies. For a description of the tables below, see ''. Discovering astronomers }, (bio-de) , align=left , M. Matsuyama , , - id="D. Matter" , align=left , Daniel Matter , 7 , 1957–pres. , , align=left , D. Matter; amateur, (bio-it) , align=left , D. Matter , , - id="A. Maury" , align=left , Alain Maury , 9 , 1958–pres. , , align=left , A. Maury; , align=left , A. Maury , , - id="D. Mayes" , align=left , Deronda Mayes , , 1957–pres. , , align=left , D. Mayes; inferred , align=left , D. Mayes , , - id="E. Mazzoni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]