100,000 (number)
   HOME
*



picture info

100,000 (number)
100,000 (one hundred thousand) is the natural number following 99,999 and preceding 100,001. In scientific notation, it is written as 105. Terms for 100,000 In India, Pakistan and South Asia, one hundred thousand is called a lakh, and is written as 1,00,000. The Thai, Lao, Khmer and Vietnamese languages also have separate words for this number: , , (all ''saen''), and respectively. The Malagasy word is . In Cyrillic numerals, it is known as the legion (): or . Values of 100,000 In astronomy, 100,000 metres, 100 kilometres, or 100 km (62 miles) is the altitude at which the Fédération Aéronautique Internationale (FAI) defines spaceflight to begin. In the Irish language, () is a popular greeting meaning "a hundred thousand welcomes". Selected 6-digit numbers (100,001–999,999) 100,001 to 199,999 100,001 to 199,999 * 100,003 = smallest 6-digit prime number * 100,128 = smallest triangular number with 6 digits and the 447th triangular number * 100,1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fédération Aéronautique Internationale
The (; FAI; en, World Air Sports Federation) is the world governing body for air sports, and also stewards definitions regarding human spaceflight. It was founded on 14 October 1905, and is headquartered in Lausanne, Switzerland. It maintains world records for aeronautical activities, including ballooning, aeromodeling, and unmanned aerial vehicles (drones), as well as flights into space. History The FAI was founded at a conference held in Paris 12–14 October 1905, which was organized following a resolution passed by the Olympic Congress held in Brussels on 10 June 1905 calling for the creation of an Association "to regulate the sport of flying, ... the various aviation meetings and advance the science and sport of Aeronautics." The conference was attended by representatives from 8 countries: Belgium (Aero Club Royal de Belgique, founded 1901), France (Aéro-Club de France, 1898), Germany ( Deutscher Aero Club e.V.), Great Britain (Royal Aero Club, 1901), Italy ( Aero C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Highly Totient Number
A highly totient number k is an integer that has more solutions to the equation \phi(x) = k, where \phi is Euler's totient function, than any integer below it. The first few highly totient numbers are 1, 2, 4, 8, 12, 24, 48, 72, 144, 240, 432, 480, 576, 720, 1152, 1440 , with 1, 3, 4, 5, 6, 10, 11, 17, 21, 31, 34, 37, 38, 49, 54, and 72 totient solutions respectively. The sequence of highly totient numbers is a subset of the sequence of smallest number k with exactly n solutions to \phi(x) = k. The totient of a number x, with prime factorization x=\prod_i p_i^, is the product: :\phi(x)=\prod_i (p_i-1)p_i^. Thus, a highly totient number is a number that has more ways of being expressed as a product of this form than does any smaller number. The concept is somewhat analogous to that of highly composite numbers, and in the same way that 1 is the only odd highly composite number, it is also the only odd highly totient number (indeed, the only odd number to not be a nontotient ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

A0001003
A, or a, is the first letter and the first vowel of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''a'' (pronounced ), plural ''aes''. It is similar in shape to the Ancient Greek letter alpha, from which it derives. The uppercase version consists of the two slanting sides of a triangle, crossed in the middle by a horizontal bar. The lowercase version can be written in two forms: the double-storey a and single-storey ɑ. The latter is commonly used in handwriting and fonts based on it, especially fonts intended to be read by children, and is also found in italic type. In English grammar, " a", and its variant " an", are indefinite articles. History The earliest certain ancestor of "A" is aleph (also written 'aleph), the first letter of the Phoenician alphabet, which consisted entirely of consonants (for that reason, it is also called an abjad to distinguish it fro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parasitic Number
An ''n''-parasitic number (in base 10) is a positive natural number which, when multiplied by ''n'', results in movement of the last digit of its decimal representation to its front. Here ''n'' is itself a single-digit positive natural number. In other words, the decimal representation undergoes a right circular shift by one place. For example: :4•128205=512820, so 128205 is 4-parasitic. Most mathematicians do not allow leading zeros to be used, and that is a commonly followed convention. So even though 4•025641=102564, the number 025641 is ''not'' 4-parasitic. Derivation An ''n''-parasitic number can be derived by starting with a digit ''k'' (which should be equal to ''n'' or greater) in the rightmost (units) place, and working up one digit at a time. For example, for ''n'' = 4 and ''k'' = 7 :4•7 = 28 :4•87 = 348 :4•487 = 1948 :4•9487 = 37948 :4•79487 = 317948 :4•179487 = 717948. So 179487 is a 4-parasitic number with units digit 7. Others are 17948717948 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pandigital Number
In mathematics, a pandigital number is an integer that in a given base has among its significant digits each digit used in the base at least once. For example, 1234567890 (one billion two hundred thirty four million five hundred sixty seven thousand eight hundred ninety) is a pandigital number in base 10. The first few pandigital base 10 numbers are given by : : 1023456789, 1023456798, 1023456879, 1023456897, 1023456978, 1023456987, 1023457689 The smallest pandigital number in a given base ''b'' is an integer of the form : b^ + \sum_^ db^ = \frac + (b-1) \times b^ - 1 The following table lists the smallest pandigital numbers of a few selected bases. gives the base 10 values for the first 18 bases. In a trivial sense, all positive integers are pandigital in unary (or tallying). In binary, all integers are pandigital except for 0 and numbers of the form 2^n - 1 (the Mersenne numbers). The larger the base, the rarer pandigital numbers become, though one can always find ru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Carmichael Number
In number theory, a Carmichael number is a composite number n, which in modular arithmetic satisfies the congruence relation: :b^n\equiv b\pmod for all integers b. The relation may also be expressed in the form: :b^\equiv 1\pmod. for all integers b which are relatively prime to n. Carmichael numbers are named after American mathematician Robert Carmichael, the term having been introduced by Nicolaas Beeger in 1950 ( Øystein Ore had referred to them in 1948 as numbers with the "Fermat property", or "''F'' numbers" for short). They are infinite in number. They constitute the comparatively rare instances where the strict converse of Fermat's Little Theorem does not hold. This fact precludes the use of that theorem as an absolute test of primality. The Carmichael numbers form the subset ''K''1 of the Knödel numbers. Overview Fermat's little theorem states that if ''p'' is a prime number, then for any integer ''b'', the number ''b'' − ''b'' is an integer multipl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Palindromic Number
A palindromic number (also known as a numeral palindrome or a numeric palindrome) is a number (such as 16461) that remains the same when its digits are reversed. In other words, it has reflectional symmetry across a vertical axis. The term ''palindromic'' is derived from palindrome, which refers to a word (such as ''rotor'' or ''racecar'') whose spelling is unchanged when its letters are reversed. The first 30 palindromic numbers (in decimal) are: : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, … . Palindromic numbers receive most attention in the realm of recreational mathematics. A typical problem asks for numbers that possess a certain property ''and'' are palindromic. For instance: * The palindromic primes are 2, 3, 5, 7, 11, 101, 131, 151, ... . * The palindromic square numbers are 0, 1, 4, 9, 121, 484, 676, 10201, 12321, ... . It is obvious that in any base there are infinitely many palindr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Friedman Number
A Friedman number is an integer, which represented in a given numeral system, is the result of a non-trivial expression using all its own digits in combination with any of the four basic arithmetic operators (+, −, ×, ÷), additive inverses, parentheses, exponentiation, and concatenation. Here, non-trivial means that at least one operation besides concatenation is used. Leading zeros cannot be used, since that would also result in trivial Friedman numbers, such as 024 = 20 + 4. For example, 347 is a Friedman number in the decimal numeral system, since 347 = 73 + 4. The decimal Friedman numbers are: :25, 121, 125, 126, 127, 128, 153, 216, 289, 343, 347, 625, 688, 736, 1022, 1024, 1206, 1255, 1260, 1285, 1296, 1395, 1435, 1503, 1530, 1792, 1827, 2048, 2187, 2349, 2500, 2501, 2502, 2503, 2504, 2505, 2506, 2507, 2508, 2509, 2592, 2737, 2916, ... . Friedman numbers are named after Erich Friedman, a now-retired mathematics professor at Stetson University, located in DeLand, Florid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Twin Prime
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair (41, 43). In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term ''twin prime'' is used for a pair of twin primes; an alternative name for this is prime twin or prime pair. Twin primes become increasingly rare as one examines larger ranges, in keeping with the general tendency of gaps between adjacent primes to become larger as the numbers themselves get larger. However, it is unknown whether there are infinitely many twin primes (the so-called twin prime conjecture) or if there is a largest pair. The breakthrough work of Yitang Zhang in 2013, as well as work by James Maynard, Terence Tao and others, has made substantial progress towards proving that there are infinitely many twin primes, but at present this remains unsolved. Properties Usually the pair (2, 3) is not considered to be a pair of twin primes. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangular Number
A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in the triangular arrangement with dots on each side, and is equal to the sum of the natural numbers from 1 to . The sequence of triangular numbers, starting with the 0th triangular number, is (This sequence is included in the On-Line Encyclopedia of Integer Sequences .) Formula The triangular numbers are given by the following explicit formulas: T_n= \sum_^n k = 1+2+3+ \dotsb +n = \frac = , where \textstyle is a binomial coefficient. It represents the number of distinct pairs that can be selected from objects, and it is read aloud as " plus one choose two". The first equation can be illustrated using a visual proof. For every triangular number T_n, imagine a "half-square" arrangement of objects corresponding to the triangular numb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]