Éléments De Géométrie Algébrique
   HOME





Éléments De Géométrie Algébrique
The (''EGA''; from French: "Elements of Algebraic Geometry") by Alexander Grothendieck (assisted by Jean Dieudonné) is a rigorous treatise on algebraic geometry that was published (in eight parts or fascicles) from 1960 through 1967 by the . In it, Grothendieck established systematic foundations of algebraic geometry, building upon the concept of schemes, which he defined. The work is now considered the foundation and basic reference of modern algebraic geometry. Editions Initially thirteen chapters were planned, but only the first four (making a total of approximately 1500 pages) were published. Much of the material which would have been found in the following chapters can be found, in a less polished form, in the '' Séminaire de géométrie algébrique'' (known as ''SGA''). Indeed, as explained by Grothendieck in the preface of the published version of ''SGA'', by 1970 it had become clear that incorporating all of the planned material in ''EGA'' would require significan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alexander Grothendieck
Alexander Grothendieck, later Alexandre Grothendieck in French (; ; ; 28 March 1928 â€“ 13 November 2014), was a German-born French mathematician who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and added elements of commutative algebra, homological algebra, sheaf theory, and category theory to its foundations, while his so-called Grothendieck's relative point of view, "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many to be the greatest mathematician of the twentieth century. Grothendieck began his productive and public career as a mathematician in 1949. In 1958, he was appointed a research professor at the Institut des Hautes Études Scientifiques, Institut des hautes études scientifiques (IHÉS) and remained there until 1970, when, driven by personal and political convictions, he left following a dispute over military funding. He receive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


James Milne (mathematician)
James S. Milne (born 10 October 1942 in Invercargill, New Zealand) is a New Zealand mathematician working in arithmetic geometry. Life Milne attended high school in Invercargill in New Zealand until 1959, and then studied at the University of Otago in Dunedin (B.A. 1964) and Harvard University (Masters 1966, Ph.D. 1967 under John Tate). From then to 1969 he was a lecturer at University College London. After that he was at the University of Michigan, as Assistant Professor (1969–1972), Associate Professor (1972–1977), Professor (1977–2000), and Professor Emeritus (since 2000). He has also been a visiting professor at King's College London, at the Institut des hautes études scientifiques in Paris (1975, 1978), at the Mathematical Sciences Research Institute in Berkeley, California (1986–87), and the Institute for Advanced Study in Princeton, New Jersey (1976–77, 1982, 1988). In his dissertation, entitled "The conjectures of Birch and Swinnerton-Dyer for constant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheaf Theory
In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well-behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every datum is the sum of its constituent data). The field of mathematics that studies sheaves is called sheaf theory. Sheaves are understood conceptually as general and abstract objects. Their precise definition is rather technical. They are specifically defined as sheaves of sets or as sheaves of rings, for example, depending on the type of data assigned to the open sets. There are also maps (or mor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homological Algebra
Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of module (mathematics), modules and Syzygy (mathematics), syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of category theory. A central concept is that of chain complexes, which can be studied through their homology and cohomology. Homological algebra affords the means to extract information contained in these complexes and present it in the form of homological invariant (mathematics), invariants of ring (mathematics), rings, modules, topological spaces, and other "tangible ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and p-adic number, ''p''-adic integers. Commutative algebra is the main technical tool of algebraic geometry, and many results and concepts of commutative algebra are strongly related with geometrical concepts. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. Several concepts of commutative algebras have been developed in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Topology
In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are ''continuity'', ''compactness'', and ''connectedness'': * Continuous functions, intuitively, take nearby points to nearby points. * Compact sets are those that can be covered by finitely many sets of arbitrarily small size. * Connected sets are sets that cannot be divided into two pieces that are far apart. The terms 'nearby', 'arbitrarily small', and 'far apart' can all be made precise by using the concept of open sets. If we change the definition of 'open set', we change what continuous functions, compact sets, and connected sets are. Each choice of definition for 'open set' is called a ''topology''. A set with a topology is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheaf (mathematics)
In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well-behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every datum is the sum of its constituent data). The field of mathematics that studies sheaves is called sheaf theory. Sheaves are understood conceptually as general and abstract objects. Their precise definition is rather technical. They are specifically defined as sheaves of sets or as sheaves of rings, for example, depending on the type of data assigned to the open sets. There are also maps (or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Stack
In mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves \mathcal_ and the moduli stack of elliptic curves. Originally, they were introduced by Alexander Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth. After Grothendieck developed the general theory of descent, and Giraud the general theory of stacks, the notion of algebraic stacks was defined by Michael Artin. Definition Motivation One of the motivating examples of an algebraic stack is to consider a groupoid scheme (R,U,s,t,m) over a fixed scheme S. For example, if R = \mu_n\times_S\mathbb^n_S (where \mu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Space
In mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Michael Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology. The resulting category of algebraic spaces extends the category of schemes and allows one to carry out several natural constructions that are used in the construction of moduli spaces but are not always possible in the smaller category of schemes, such as taking the quotient of a free action by a finite group (cf. the Keel–Mori theorem). Definition There are two common ways to define algebraic spaces: they can be defined as either quotients ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fondements De La Géometrie Algébrique
''Fondements de la Géometrie Algébrique'' (''FGA'') is a book that collected together seminar notes of Alexander Grothendieck. It is an important source for his pioneering work on scheme theory, which laid foundations for algebraic geometry in its modern technical developments. The title is a translation of the title of André Weil's book ''Foundations of Algebraic Geometry.'' It contained material on descent theory, and existence theorems including that for the Hilbert scheme. The ''Technique de descente et théorèmes d'existence en géometrie algébrique'' is one series of seminars within ''FGA''. Like the bulk of Grothendieck's work of the IHÉS period, duplicated notes were circulated, but the publication was not as a conventional book. Contents These are Séminaire Bourbaki notes, by number, from the years 1957 to 1962.Fondements de la géométrie algébrique. Commentaires éminaire Bourbaki, t. 14, 1961/62, ComplémentThéorème de dualité pour les faisceaux algébr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]